Question

A regression analysis was performed and the summary output is shown below. Regression Statistics Multiple R...

A regression analysis was performed and the summary output is shown below.

Regression Statistics
Multiple R 0.7149844700.714984470
R Square 0.5112027920.511202792
Adjusted R Square 0.4904029110.490402911
Standard Error 8.2079903998.207990399
Observations 5050
ANOVA
dfdf SSSS MSMS FF Significance FF
Regression 22 3311.5863311.586 1655.7931655.793 24.577224.5772 4.9491E-084.9491E-08
Residual 4747 3166.4423166.442 67.37167.371
Total 4949 6478.0286478.028

Step 1 of 2:

How many independent variables are included in the regression model?

Step 2 of 2:

Which measure is appropriate for determining the proportion of variation in the dependent variable explained by the set of independent variable(s) in this model?

Homework Answers

Answer #1

(1) Degree of freedom for regression = 2

and we know that number of independent variable =df(regression) + 1

independent variables = 2 + 1 = 3

So, we have 3 independent variables in regression model.

(2) R square is appropriate for determining the proportion of variation in the dependent variable explained by the set of independent variable(s) in this model

Given that R square = 0.5112

this means that 51.12% of variation in the dependent variable explained by the set of independent variable(s) in this model

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
SUMMARY OUTPUT Dependent X variable: all other variables Regression Statistics Independent Y variable: oil usage Multiple...
SUMMARY OUTPUT Dependent X variable: all other variables Regression Statistics Independent Y variable: oil usage Multiple R 0.885464 R Square 0.784046 variation Adjusted R Square 0.76605 Standard Error 85.4675 Observations 40 ANOVA df SS MS F Significance F Regression 3 954738.9 318246.3089 43.56737 4.55E-12 Residual 36 262969 7304.693706 Total 39 1217708 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept -218.31 63.95851 -3.413304572 0.001602 -348.024 -88.596 -348.024 -88.596 Degree Days 0.275079 0.036333 7.571119093 5.94E-09...
SUMMARY OUTPUT Regression Statistics Multiple R 0.870402 R Square 0.7576 Adjusted R Square 0.68488 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.870402 R Square 0.7576 Adjusted R Square 0.68488 Standard Error 1816.52 Observations 27 ANOVA df SS MS F Significance F Regression 6 2.06E+08 34376848 10.41804 2.81E-05 Residual 20 65994862 3299743 Total 26 2.72E+08 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept -4695.4 12622.97 -0.37197 0.713825 -31026.5 21635.66 -31026.5 21635.66 AGE 161.7028 126.5655 1.277621 0.216015 -102.308 425.7137 -102.308 425.7137 MILAGE -0.03441 0.023186 -1.4842 0.153346 -0.08278 0.013953 -0.08278 0.013953...
SUMMARY OUTPUT Regression Statistics Multiple R 0.909785963 R Square 0.827710499 Adjusted R Square 0.826591736 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.909785963 R Square 0.827710499 Adjusted R Square 0.826591736 Standard Error 7.177298036 Observations 156 ANOVA df SS MS F Significance F Regression 1 38112.05194 38112.05194 739.8443652 1.09619E-60 Residual 154 7933.095493 51.5136071 Total 155 46045.14744 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 8.67422449 2.447697434 3.543830365 0.000522385 3.838827439 13.50962154 3.838827439 13.50962154 X Variable 1 0.801382837 0.029462517 27.20008024 1.09619E-60 0.743179986 0.859585688 0.743179986 0.859585688 (d) How much of the variation in...
Using the attached regression output, answer the following: SUMMARY OUTPUT Regression Statistics Multiple R 0.972971 R...
Using the attached regression output, answer the following: SUMMARY OUTPUT Regression Statistics Multiple R 0.972971 R Square 0.946673 Adjusted R Square 0.944355 Standard Error 76.07265 Observations 49 ANOVA df SS MS F Significance F Regression 2 4725757 2362878 408.3046 5.24E-30 Residual 46 266204.2 5787.049 Total 48 4991961 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Intercept -0.46627 14.97924 -0.03113 0.975302 -30.6179 29.68537 X1 0.09548 0.084947 1.123997 0.266846 -0.07551 0.26647 X2 0.896042 0.205319 4.364141 7.16E-05 0.482756 1.309328 a. What...
The following regression output is available. Notice that some of the values are missing. Regression Statistics...
The following regression output is available. Notice that some of the values are missing. Regression Statistics   Multiple R 0.754525991 Adjusted R Square 0.507782253 Standard Error      ANOVA df SS MS Regression 1 Residual 7 27.3727758 3.910397 Total 8 63.55555556 Coefficients Standard Error Intercept 4.822953737 2.20457789 X 0.053825623 0.017694916 Pt 1. Given this information, what is the standard error of the estimate for the regression model? Pt 2.  Given this information, what was the sample size used in the study? Pt 3....
Consider the following monthly revenue data for an up-and-coming service company. Sales Data Month Revenue (Thousands...
Consider the following monthly revenue data for an up-and-coming service company. Sales Data Month Revenue (Thousands of Dollars) Month Revenue (Thousands of Dollars) 11 315315 1010 819819 22 535535 1111 827827 33 533533 1212 843843 44 574574 1313 855855 55 628628 1414 849849 66 659659 1515 858858 77 697697 1616 870870 88 709709 1717 889889 99 789789 The summary output from a regression analysis of the data is also provided. Regression Statistics Multiple R 0.9309852070.930985207 R Square 0.8667334560.866733456 Adjusted R...
SUMMARY OUTPUT Regression Statistics Multiple R 0.84508179 R Square 0.714163232 Adjusted R Square 0.704942691 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.84508179 R Square 0.714163232 Adjusted R Square 0.704942691 Standard Error 9.187149383 Observations 33 ANOVA df SS MS F Significance F Regression 1 6537.363661 6537.363661 77.4535073 6.17395E-10 Residual 31 2616.515127 84.40371378 Total 32 9153.878788 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 61.07492285 3.406335763 17.92980114 6.41286E-18 54.12765526 68.02219044 54.12765526 68.02219044 Time (Y) -0.038369095 0.004359744 -8.800767426 6.17395E-10 -0.047260852 -0.029477338 -0.047260852 -0.029477338 Using your highlighted cells, what is the equation...
SUMMARY OUTPUT Regression Statistics Multiple R 0.440902923 R Square 0.194395388 Adjusted R Square 0.165100675 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.440902923 R Square 0.194395388 Adjusted R Square 0.165100675 Standard Error 0.428710255 Observations 115 ANOVA df SS MS F Significance F Regression 4 4.878479035 1.219619759 6.635852231 8.02761E-05 Residual 110 20.21717314 0.183792483 Total 114 25.09565217 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 0.321875686 0.323939655 0.99362854 0.322584465 -0.320096675 0.963848047 -0.320096675 0.963848047 Gender -0.307211858 0.082630734 -3.717888514 0.000317832 -0.470966578 -0.143457137 -0.470966578 -0.143457137 Age 0.000724105 0.091134233 0.007945479 0.993674883 -0.179882553 0.181330763 -0.179882553 0.181330763...
SUMMARY OUTPUT Regression Statistics Multiple R 0.231960777 R Square 0.053805802 Adjusted R Square 0.034093423 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.231960777 R Square 0.053805802 Adjusted R Square 0.034093423 Standard Error 5272.980333 Observations 50 ANOVA df SS MS F Significance F Regression 1 75893113.09 75893113.09 2.729543781 0.105035125 Residual 48 1334607437 27804321.59 Total 49 1410500550 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 99.0% Upper 99.0% Intercept 6396.894057 3281.342486 1.949474669 0.057094351 -200.6871963 12994.47531 -2404.335972 15198.12409 HSRANK 64.68225855 39.15075519 1.6521331 0.105035125 -14.03561063 143.4001277 -40.32805468 169.6925718 a. According to your estimate, what is the predicted...
Consider the following computer output of a multiple regression analysis relating annual salary to years of...
Consider the following computer output of a multiple regression analysis relating annual salary to years of education and years of work experience. Regression Statistics Multiple R 0.7345 R Square 0.5395 Adjusted R Square 0.5195 Standard Error 2134.9715 Observations 49 ANOVA df SS MS F Significance F Regression 2 245,644,973.9500 122,822,486.9750 26.9460 1.8E-08 Residual 46        209,672,760.0092 4,558,103.4785 Total 48 455,317,733.9592 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Intercept 14271.51879 2,525.5672 5.6508 0.000000963 9187.8157 19,355.2219 Education (Years) 2351.3035...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT