Question

A genetic experiment involving peas yielded one sample of offspring consisting of 426 green peas and...

A genetic experiment involving peas yielded one sample of offspring consisting of 426 green peas and 164 yellow peas. Use a 0.05 significance level to test the claim that under the same​ circumstances, 24​% of offspring peas will be yellow. Identify the null​ hypothesis, alternative​ hypothesis, test​ statistic, P-value, conclusion about the null​ hypothesis, and final conclusion that addresses the original claim. Use the​ P-value method and the normal distribution as an approximation to the binomial distribution.

Homework Answers

Answer #1

Given : n=426 , X=164 , The estimate of the sample proportion is ,

Hypothesis: Vs  

The test statistic is ,

The p-value is ,

p-value=

The Excel function is , =2*(1-NORMDIST(7.01,0,1,TRUE))

Decision : Here , p-value <0.05

Therefore , reject the null hypothesis.

Conclusion : Hence , there is not enough evidence to support the claim that under the same​ circumstances, 24​% of offspring peas will be yellow.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A genetic experiment involving peas yielded one sample of offspring consisting of 442 green peas and...
A genetic experiment involving peas yielded one sample of offspring consisting of 442 green peas and 123 yellow peas. Use a 0.01 significance level to test the claim that under the same​ circumstances, 26​% of offspring peas will be yellow. Identify the null​ hypothesis, alternative​ hypothesis, test​ statistic, P-value, conclusion about the null​ hypothesis, and final conclusion that addresses the original claim. Use the​ P-value method and the normal distribution as an approximation to the binomial distribution
A genetic experiment involving peas yielded one sample of offspring consisting of 404 green peas and...
A genetic experiment involving peas yielded one sample of offspring consisting of 404 green peas and 142 yellow peas. Use a 0.01 significance level to test the claim that under the same​ circumstances, 27​% of offspring peas will be yellow. Identify the null​ hypothesis, alternative​ hypothesis, test​ statistic, P-value, conclusion about the null​ hypothesis, and final conclusion that addresses the original claim. Use the​ P-value method and the normal distribution as an approximation to the binomial distribution.
A genetic experiment involving peas yielded one sample of offspring consisting of 417 green peas and...
A genetic experiment involving peas yielded one sample of offspring consisting of 417 green peas and 158 yellow peas. Use a 0.05 significance level to test the claim that under the same​ circumstances, ​23% of offspring peas will be yellow. Identify the null​ hypothesis, alternative​ hypothesis, test​ statistic, P-value, conclusion about the null​ hypothesis, and final conclusion that addresses the original claim. Use the​ P-value method and the normal distribution as an approximation to the binomial distribution.
A genetic experiment involving peas yielded one sample of offspring consisting of 437 green peas and...
A genetic experiment involving peas yielded one sample of offspring consisting of 437 green peas and 174 yellow peas. Use a 0.01 significance level to test the claim that under the same​ circumstances, 23​% of offspring peas will be yellow. Identify the null​ hypothesis, alternative​ hypothesis, test​ statistic, P-value, conclusion about the null​ hypothesis, and final conclusion that addresses the original claim. Use the​ P-value method and the normal distribution as an approximation to the binomial distribution.
A genetic experiment involving peas yielded one sample of offspring consisting of 437 green peas and...
A genetic experiment involving peas yielded one sample of offspring consisting of 437 green peas and 121 yellow peas. Use a 0.01 significance level to test the claim that under the same​ circumstances, 24​% of offspring peas will be yellow. Identify the null​ hypothesis, alternative​ hypothesis, test​ statistic, P-value, conclusion about the null​ hypothesis, and final conclusion that addresses the original claim. Use the​ P-value method and the normal distribution as an approximation to the binomial distribution.
genetic experiment involving peas yielded one sample of offspring consisting of 422 green peas and 134...
genetic experiment involving peas yielded one sample of offspring consisting of 422 green peas and 134 yellow peas. Use a 0.01 significance level to test the claim that under the same​ circumstances, 24​% of offspring peas will be yellow. Identify the null​ hypothesis, alternative​ hypothesis, test​ statistic, P-value, conclusion about the null​ hypothesis, and final conclusion that addresses the original claim. Use the​ P-value method and the normal distribution as an approximation to the binomial distribution.
A genetic experiment involving peas yielded one sample of offspring consisting of 404 green peas and...
A genetic experiment involving peas yielded one sample of offspring consisting of 404 green peas and 134 yellow peas. Use a 0.01 significance level to test the claim that under the same​ circumstances, 24​% of offspring peas will be yellow. Identify the null​ hypothesis, alternative​ hypothesis, test​ statistic, P-value, conclusion about the null​ hypothesis, and final conclusion that addresses the original claim. Use the​ P-value method and the normal distribution as an approximation to the binomial distribution. what is the...
A genetic experiment involving peas yielded one sample of offspring consisting of 448 green peas and...
A genetic experiment involving peas yielded one sample of offspring consisting of 448 green peas and 140 yellow peas. Use a 0.05 significance level to test the claim that under the same​ circumstances, 26​% of offspring peas will be yellow. Identify the null​ hypothesis, alternative​ hypothesis, test​ statistic, P-value, conclusion about the null​ hypothesis, and final conclusion that addresses the original claim. Use the​ P-value method and the normal distribution as an approximation to the binomial distribution. What is the...
A genetic experiment involving peas yielded one sample of offspring consisting of 405 green peas and...
A genetic experiment involving peas yielded one sample of offspring consisting of 405 green peas and 156 yellow peas. Use a 0.05 significance level to test the claim that under the same​ circumstances, 27​% of offspring peas will be yellow. Identify the null​ hypothesis, alternative​ hypothesis, test​ statistic, P-value, conclusion about the null​ hypothesis, and final conclusion that addresses the original claim. Use the​ P-value method and the normal distribution as an approximation to the binomial distribution What is the...
a genetic experience involving peas yielded one sample of Offspring consisting of 408 green peas and...
a genetic experience involving peas yielded one sample of Offspring consisting of 408 green peas and 162 yellow pill use a .05 significance level to test the claim that under the same circumstances 27% of Offspring peas will be yellow identify the null hypothesis and alternative hypothesis test statistics p-value conclusion about the null hypothesis and final conclusion that addresses the original claim use the P Value method and the normal distribution as an approximation to the binomial