Question

Let P be a predicate. Determine whether or not each of the following implications is true...

Let P be a predicate. Determine whether or not each of the following implications is true and give a brief English explanation for your answer.

1)∀x∃yP(x, y) -> ∃y∀xP(x, y)

2)∃y∀xP(x, y) -> ∀x∃yP(x, y)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
(a) Let the statement, ∀x∈R,∃y∈R G(x,y), be true for predicate G(x,y). For each of the following...
(a) Let the statement, ∀x∈R,∃y∈R G(x,y), be true for predicate G(x,y). For each of the following statements, decide if the statement is certainly true, certainly false,or possibly true, and justify your solution. 1 (i) G(3,4) (ii) ∀x∈RG(x,3) (iii) ∃y G(3,y) (iv) ∀y¬G(3,y)(v)∃x G(x,4)
(1) Determine whether the propositions p → (q ∨ ¬r) and (p ∧ ¬q) → ¬r...
(1) Determine whether the propositions p → (q ∨ ¬r) and (p ∧ ¬q) → ¬r are logically equivalent using either a truth table or laws of logic. (2) Let A, B and C be sets. If a is the proposition “x ∈ A”, b is the proposition “x ∈ B” and c is the proposition “x ∈ C”, write down a proposition involving a, b and c that is logically equivalentto“x∈A∪(B−C)”. (3) Consider the statement ∀x∃y¬P(x,y). Write down a...
For each set of conditions below, give an example of a predicate P(n) defined on N...
For each set of conditions below, give an example of a predicate P(n) defined on N that satisfy those conditions (and justify your example), or explain why such a predicate cannot exist. (a) P(n) is True for n ≤ 5 and n = 8; False for all other natural numbers. (b) P(1) is False, and (∀k ≥ 1)(P(k) ⇒ P(k + 1)) is True. (c) P(1) and P(2) are True, but [(∀k ≥ 3)(P(k) ⇒ P(k + 1))] is False....
For each of the following statements, determine and explain whether it is true or false: a)...
For each of the following statements, determine and explain whether it is true or false: a) If y[n] = x[n] ∗ h[n], then y[n − 1] = x[n − 1] ∗ h[n − 1]. b) If y(t) = x(t) ∗ h(t), then y(−t) = x(−t) ∗ h(−t). c) If x(t) = 0 for t > T1 and h(t) = 0 for t > T2, then x(t) ∗ h(t) = 0 for t > T1 + T2.
True or false; for each of the statements below, state whether they are true or false....
True or false; for each of the statements below, state whether they are true or false. If false, give an explanation or example that illustrates why it's false. (a) The matrix A = [1 0] is not invertible.                               [1 -2] (b) Let B be a matrix. The rowspaces row (B), row (REF(B)) and row (RREF(B)) are all equivalent. (c) Let C be a 5 x 7 matrix with nullity 3. The rank of C is 2. (d) Let D...
Exercise 4.11. For each of the following, state whether it is true or false. If true,...
Exercise 4.11. For each of the following, state whether it is true or false. If true, prove. If false, provide a counterexample. (i) Let X and Y be sets from Rn. If X ⊂ Y then X is closed if and only if Y is closed. (ii) Let X and Y be sets from Rn. If X ∩Y is closed and convex then either X or Y is closed and convex (one or the other). (iii) Let X be an...
Let A and B be true, X, Y, and Z false. P and Q have unknown...
Let A and B be true, X, Y, and Z false. P and Q have unknown truth value. Please, determine the truth value of the propositions in problem 1. Please, show the process of calculation by using the letter ‘T’ for ‘true,’ ‘F’ for ‘false,’ and ‘?’ for ‘unknown value’ under each letter and operator. Please underline your answer (truth value under the main operator) and make it into Bold font 1.  [ ( Z ⊃ P ) ⊃ P ]...
Exercise 4.11. For each of the following, state whether it is true or false. If true,...
Exercise 4.11. For each of the following, state whether it is true or false. If true, prove. If false, provide a counterexample. (i) LetX andY besetsfromRn. IfX⊂Y thenX is closed if and only if Y is closed. (ii) Let X and Y be sets from Rn. If X ∩Y is closed and convex then eitherX or Y is closed and convex (one or the other). (iii) LetX beanopensetandY ⊆X. IfY ≠∅,thenY isaconvexset. (iv) SupposeX isanopensetandY isaconvexset. IfX∩Y ⊂X then X∪Y...
Let D = E = {−2, 0, 2, 3}. Write negations for each of the following...
Let D = E = {−2, 0, 2, 3}. Write negations for each of the following statements and determine which is true, the given statement or its negation. Explain your answer (i) ∃x ∈ D such that ∀y ∈ E, x + y = y. (ii) ∀x ∈ D, ∃y ∈ E such that xy ≥ y.
Let D = E = {−2, 0, 2, 3}. Write negations for each of the following...
Let D = E = {−2, 0, 2, 3}. Write negations for each of the following statements and determine which is true, the given statement or its negation. Explain your answer. (i) ∃x ∈ D such that ∀y ∈ E, x + y = y. (ii) ∀x ∈ D, ∃y ∈ E such that xy ≥ y.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT