Question

A card company claims that 80% of all American college students send a card to their...

A card company claims that 80% of all American college students send a card to their mother on Mother’s Day. Suppose you plan to gather your own data to test this claim, wondering if your sample proportion will differ in either direction from the proportion claimed by the card company. You select a random sample of 53 American college students and find that 37 of them send a card to their mother on Mother’s Day. Do you have enough evidence to reject the card company’s claim?

Group of answer choices

No, because your z of one-sample proportion test statistic is -1.8 and that is less extreme than the critical value of .05.

Yes, because you found that only 70% of your sample sent cards, and that result is less than the card company’s claim of 80%.

No, because your z of one-sample proportion test statistic is -1.8 and that is less extreme than the critical value of -1.96.

Yes, because your z of one-sample proportion test statistic is -1.8 and that is more extreme than the critical value of -1.645.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A college instructor claims that the proportion of students who will fail the final exam is...
A college instructor claims that the proportion of students who will fail the final exam is less than 10%.     To test this claim, a random sample of student results on the final exam is monitored. Assume that the test statistic for this hypothesis test is −2.13. Assume the critical value for this hypothesis test is −1.645. Come to a decision for the hypothesis test and interpret your results with respect to the original claim. Select the correct answer below: a)...
The HR director at a company says that 15% of college graduates, to whom they send...
The HR director at a company says that 15% of college graduates, to whom they send brochures, apply for jobs. In a sample of 300 persons receiving brochures, 30 applied. Complete a two-tailed hypothesis test at the 5% significance level for a single proportion to determine if the HR director’s claim is valid. What is the null hypothesis? What is the alternative hypothesis? What are the critical values of the z statistic? What is the test statistic (a.k.a. calculated value...
1.) According to a lending​ institution, students graduating from college have an average credit card debt...
1.) According to a lending​ institution, students graduating from college have an average credit card debt of ​$4,200. A random sample of 40 graduating seniors was selected, and their average credit card debt was found to be ​$4,542. Assume the standard deviation for student credit card debt is $1,100. Using alphaαequals=0.01​, complete parts a through d below. a. what is the test statistic? b. what are the critical scores? c.fill in the blank: because the test statistic ___________________ _________ the...
College students and STDs: A recent report estimated that 25% of all college students in the...
College students and STDs: A recent report estimated that 25% of all college students in the United States have a sexually transmitted disease (STD). Due to the demographics of the community, the director of the campus health center believes that the proportion of students who have a STD is lower at his college. He tests H0: p = 0.25 versus Ha: p < 0.25. The campus health center staff select a random sample of 50 students and determine that 18%...
The US Department of Agriculture estimates that 80% of American families cook dinner nightly. In a...
The US Department of Agriculture estimates that 80% of American families cook dinner nightly. In a recent poll of 289 American families, 76.125% families said they cook dinner nightly. Use a 0.025 significance level to test the claim that the proportion of American families who cook dinner nightly is smaller than 80%. The test statistic is: z= The Critical Value is: zα2=
Researchers believe that a majority (over 50%) of college students would date someone shorter than them....
Researchers believe that a majority (over 50%) of college students would date someone shorter than them. To test this claim, they asked a sample of 236 college students “Would you date someone shorter than you”, of which 120 said “yes”, and computed the test statistic z = 0.26. The P value for this test is    . (Round your answer to the fourth decimal place.)
Question 3 A college professor claims the proportion of students that complete a homework assignment is...
Question 3 A college professor claims the proportion of students that complete a homework assignment is 70%.     To test this claim, a random sample of students are monitored and checked if they completed the home the algebra class. Assume that the test statistic for this hypothesis test is −1.73. Since this is a two tailed hypothesis test, assume that the critical values for this hypothesis test are −1.96 and 1.96. Come to a decision for the hypothesis test and interpret...
According to a lending instistution, students graduating from college have an average credit card debt of...
According to a lending instistution, students graduating from college have an average credit card debt of $4,100. A sample of 50 graduating seniors was selected, and their average credit card debt was found to be $4,462. Assume the standard deviation for student credit card debt is $1,200. Using alpha= 0.10, complete a-c below. a. The z-test statistic is _____ b. The critical z score(s) is(are)_____ c. The p-value is_____
An educated researcher claims that 57% of college students working year-round in a random sample 500...
An educated researcher claims that 57% of college students working year-round in a random sample 500 college students 285 say that they work year-round. At a= 0.01 is there enough evidence to reject the researchers claim? what is critical value? what is the standard test statistic z? what is the p value?
A credit reporting agency claims that the mean credit card debt in a town is greater...
A credit reporting agency claims that the mean credit card debt in a town is greater than $3500. A random sample of the credit card debt of 20 residents in that town has a mean credit card debt of $3619 and a standard deviation of $391. At α=0.10, can the credit agency’s claim be supported? Yes, since p-value of 0.19 is greater than 0.10, fail to reject the null. Claim is null, so is supported No, since p-value of 0.09...