Question

let X1 X2 ...Xn-1 Xn be independent exponentially distributed variables with mean beta a). find sampling...

let X1 X2 ...Xn-1 Xn be independent exponentially distributed variables with mean beta

a). find sampling distribution of the first order statistic

b). Is this an exponential distribution if yes why

c). If n=5 and beta=2 then find P(Y1<=3.6)

d). find the probability distribution of Y1=max(X1, X2, ..., Xn)

Homework Answers

Answer #1

hii..i am trying to provide the detailed answer to you but if you have any doubt please ask by comment. thanks..

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let X1,X2,..., Xn be independent random variables that are exponentially distributed with respective parameters λ1,λ2,..., λn....
Let X1,X2,..., Xn be independent random variables that are exponentially distributed with respective parameters λ1,λ2,..., λn. Identify the distribution of the minimum V = min{X1,X2,...,Xn}.
Consider n independent variables, {X1, X2, . . . , Xn} uniformly distributed over the unit...
Consider n independent variables, {X1, X2, . . . , Xn} uniformly distributed over the unit interval, (0, 1). Introduce two new random variables, M = max (X1, X2, . . . , Xn) and N = min (X1, X2, . . . , Xn). (A) Find the joint distribution of a pair (M, N). (B) Derive the CDF and density for M. (C) Derive the CDF and density for N. (D) Find moments of first and second order for...
Let X1, X2,... be a sequence of independent random variables distributed exponentially with mean 1. Suppose...
Let X1, X2,... be a sequence of independent random variables distributed exponentially with mean 1. Suppose that N is a random variable, independent of the Xi-s, that has a Poisson distribution with mean λ > 0. What is the expected value of X1 + X2 +···+ XN2? (A) N2 (B) λ + λ2 (C) λ2 (D) 1/λ2
Suppose that X1, X2, . . . , Xn are independent identically distributed random variables with...
Suppose that X1, X2, . . . , Xn are independent identically distributed random variables with variance σ2. Let Y1 = X2 +X3 , Y2 = X1 +X3 and Y3 = X1 + X2. Find the following : (in terms of σ2) (a) Var(Y1) (b) cov(Y1 , Y2 ) (c) cov(X1 , Y1 ) (d) Var[(Y1 + Y2 + Y3)/2]
You are given that X1 and X2 are two independent and identically distributed random variables with...
You are given that X1 and X2 are two independent and identically distributed random variables with a Poisson distribution with mean 2. Let Y = max{X1, X2}. Find P(Y = 1).
Let X1, X2, . . . Xn be iid exponential random variables with unknown mean β....
Let X1, X2, . . . Xn be iid exponential random variables with unknown mean β. Find the method of moments estimator of β
1)Let X1, ..., Xn be independent standard normal random variables, we know that X2 1 +...
1)Let X1, ..., Xn be independent standard normal random variables, we know that X2 1 + ... + X2 n follows the chi-squared distribution of n degrees of freedom. Find the third moment of the the chi-squared distribution of 2 degrees of freedom. 2) Suppose that, on average, 1 person in 1000 makes a numerical error in preparing his or her income tax return. If 10,000 returns are selected at random and examined, find the probability that 6 or 7...
Let X1 and X2 be two independent geometric random variables with the probability of success 0...
Let X1 and X2 be two independent geometric random variables with the probability of success 0 < p < 1. Find the joint probability mass function of (Y1, Y2) with its support, where Y1 = X1 + X2 and Y2 = X2.
Let X1, X2, . . ., Xn be independent, but not identically distributed, samples. All these...
Let X1, X2, . . ., Xn be independent, but not identically distributed, samples. All these Xi ’s are assumed to be normally distributed with Xi ∼ N(θci , σ^2 ), i = 1, 2, . . ., n, where θ is an unknown parameter, σ^2 is known, and ci ’s are some known constants (not all ci ’s are zero). We wish to estimate θ. (a) Write down the likelihood function, i.e., the joint density function of (X1, ....
Let Xi, i=1,...,n be independent exponential r.v. with mean 1/ui. Define Yn=min(X1,...,Xn), Zn=max(X1,...,Xn). 1. Define the...
Let Xi, i=1,...,n be independent exponential r.v. with mean 1/ui. Define Yn=min(X1,...,Xn), Zn=max(X1,...,Xn). 1. Define the CDF of Yn,Zn 2. What is E(Zn) 3. Show that the probability that Xi is the smallest one among X1,...,Xn is equal to ui/(u1+...+un)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT