his contingency table describes 200 business students. |
Major |
||||
Gender | Accounting (A) |
Economics (E) |
Statistics (S) |
Row Total |
Female (F) | 44 | 27 | 26 | 97 |
Male (M) | 48 | 30 | 25 | 103 |
Column Total |
92 |
57 |
51 |
200 |
Find each probability. (Round your answers to 4 decimal places.) |
a. | P(A) | |
b. | P(M) | |
c. | P(A ∩ M) | |
d. | P(F ∩ S) | |
e. | P(A | M) | |
f. | P(A | F) | |
g. | P(F | S) | |
h. | P(E U F) | |
Using given contingency table we find the following probabilities,
a) P(A) = 92/200 = 0.46
=> P(A) = 0.46
b) P(M) = 103/200 = 0.515
=> P(M) = 0.515
c) P(A ∩ M) = 48/200 = 0.24
=> P(A ∩ M) = 0.24
d) P(F ∩ S) = 26/200 = 0.13
=> P(F ∩ S) = 0.13
e) P(A | M) = 48/103 = 0.4660
=> P(A | M) = 0.4660
f) P(A | F) = 44/97 = 0.4536
=> P(A | F) = 0.4536
g) P(F | S) = 26/51 = 0.5098
=> P(F | S) = 0.5098
h) P(E U F) = P(E) + P(F) - P(E ∩ F)
=> P(E U F) = (57/200) + (97/200) - (27/200)
=> P(E U F) = (57 + 97 - 27)/200
=> P(E U F) = 127/200
=> P(E U F) = 0.635
Get Answers For Free
Most questions answered within 1 hours.