Question

3. Suppose that h(x) is the hazard function of X, and h(x)= λ for all x....

3. Suppose that h(x) is the hazard function of X, and h(x)= λ for all x.

(a) Calculate the survival function S(x).

(b) Derive the mean life E(X) and the mean residual life E(X-x|X>x), where E(X) is a special case of mean residual life with x=0.

(c) Based on your answer in (b), do you think h(x) can be used to model human lifespan?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The hazard rate is 0 at time 0 and linearly increases ?(? > 0) as time...
The hazard rate is 0 at time 0 and linearly increases ?(? > 0) as time increases 2 units. Find the following quantities: a) The survival function. b) The probability density function. c) The median of survival time. d) The mean residual time formula at time 2 . e) Describe the shape of hazard function and probability density function.
Problem #3. X is a random variable with an exponential distribution with rate λ = 7...
Problem #3. X is a random variable with an exponential distribution with rate λ = 7 Thus the pdf of X is f(x) = λ e−λx for 0 ≤ x where λ = 7. a) Using the f(x) above and the R integrate function calculate the expected value of X. b) Using the f(x) above and the R integrate function calculate the expected value of X2 c) Using the dexp function and the R integrate command calculate the expected value...
Given the exponential distribution f(x) = λe^(−λx), where λ > 0 is a parameter. Derive the...
Given the exponential distribution f(x) = λe^(−λx), where λ > 0 is a parameter. Derive the moment generating function M(t). Further, from this mgf, find expressions for E(X) and V ar(X).
Problem #3. X is a random variable with an exponential distribution with rate λ = 7...
Problem #3. X is a random variable with an exponential distribution with rate λ = 7 Thus the pdf of X is f(x) = λ e−λx for 0 ≤ x where λ = 7. PLEASE ANSWER these parts if you can. f) Calculate the probability that X is at least .3 more than its expected value.Use the pexp function: g) Copy your R script for the above into the text box here.
Suppose that X is Poisson, with unknown mean λ, and let X1, ..., Xn be a...
Suppose that X is Poisson, with unknown mean λ, and let X1, ..., Xn be a random sample from X. a. Find the CRLB for the variance of estimators based on X1, ..., Xn. ̂̅̂ b. Verify that ? = X is an unbiased estimator for λ, and then show that ? is an efficient estimator for λ.
Suppose that the time to death X has an exponential distribution with hazard rate and that...
Suppose that the time to death X has an exponential distribution with hazard rate and that the right-censoring time C is exponential with hazard rate . LetT min(X,C) and 1 ifX C;0 ,if X C. Assume that X and C are independent. (a) Find P( 1) (b) Find the distribution of T. (c) Show that and T are independent. (d) Let (T1, 1),...,(Tn, n) be a random sample from this model. Show that the maximum likelihood estimator of is n...
3. Suppose that a random variable X has the density function f (x) = 2x, 0...
3. Suppose that a random variable X has the density function f (x) = 2x, 0 ≤ x ≤ 1, and that f (x) = 0 for x <0 and x > 1. a) Calculate the distribution function for X, as well as the corresponding E (X) and variance V (X). b) The numbers ​​u1 = 0.0503, u2 = 0.9149, u3 = 0.3103, u4 = 0.1866, u5 = 0.6553 uniformly distributed, independent random numbers on the interval [0, 1]. Calculate,...
Suppose that a consumer has the utility function given by: U(x,y)= (x^a)*(y^b) With prices p^x, p^y...
Suppose that a consumer has the utility function given by: U(x,y)= (x^a)*(y^b) With prices p^x, p^y and the income M, and where a>0, b>0. a) Maximize this consumer's utility. Derive Marshallian demand for both goods. b) Show that at the optimum, the share of income spent on each good does not depend on prices or income. c) Show that the elasticity of Marshallian demand for x is constant. d) For good x, use your answers to b) the elasticities of...
Poisson Distribution: p(x, λ)  =   λx  exp(-λ) /x!  ,  x = 0, 1, 2, ….. Find the moment generating function Mx(t)...
Poisson Distribution: p(x, λ)  =   λx  exp(-λ) /x!  ,  x = 0, 1, 2, ….. Find the moment generating function Mx(t) Find E(X) using the moment generating function 2. If X1 , X2 , X3  are independent and have means 4, 9, and 3, and variencesn3, 7, and 5. Given that Y = 2X1  -  3X2  + 4X3. find the mean of Y variance of  Y. 3. A safety engineer claims that 2 in 12 automobile accidents are due to driver fatigue. Using the formula for Binomial Distribution find the...
3. Suppose that an individual’s utility function for consumption, C, and leisure, L, is given by...
3. Suppose that an individual’s utility function for consumption, C, and leisure, L, is given by U(C, L) = C 0.5L 0.5 This person is constrained by two equations: (1) an income constraint that shows how consumption can be financed, C = wH + V, where H is hours of work and V is nonlabor income; and (2) a total time constraint (T = 1) L + H = 1 Assume V = 0, then the expenditure-minimization problem is minimize...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT