Question

X1. X2. X3 Y1. 30. 40 52 (33.46) (41.83)(46.71) Y2. 18. 20. 15 (14.54)(18.18)(20.29) The table...

X1. X2. X3
Y1. 30. 40 52
(33.46) (41.83)(46.71)
Y2. 18. 20. 15
(14.54)(18.18)(20.29)
The table to the right contains observed values and expected values in parentheses for two categorical variables, X and Y, where variable X has three categories and variable Y has two categories. Use the table to complete parts
(a)Compute the value of the chi-square test statistic. X2/0= (round three decimal places)
(b)Test the hypothesis that X and Y are independent at the a=0.1 level of significance.
(c)What is the p-vaue? (three decimal places)
(d)What should be rejected?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
4-bit signed numbers X = x3 x2 x1 x0 Y = y3 y2 y1 y0 need...
4-bit signed numbers X = x3 x2 x1 x0 Y = y3 y2 y1 y0 need a logic simulation to read signed numbers x3, and y3. if x3 and y3 are equal to 0, read the number as is. if x3 and y3 are equal to 1, take the 2's complement of number.
4.4-JG1 Given the following joint density function in Example 4.4-1: fx,y(x,y)=(2/15)d(x-x1)d(y-y1)+(3/15)d(x-x2)d(y-y1)+(1/15)d(x-x2)d(y-y2)+(4/15)d(x-x1)d(y-y3) a) Determine fx(x|y=y1) Ans: 0.4d(x-x1)+0.6d(x-x2)...
4.4-JG1 Given the following joint density function in Example 4.4-1: fx,y(x,y)=(2/15)d(x-x1)d(y-y1)+(3/15)d(x-x2)d(y-y1)+(1/15)d(x-x2)d(y-y2)+(4/15)d(x-x1)d(y-y3) a) Determine fx(x|y=y1) Ans: 0.4d(x-x1)+0.6d(x-x2) b) Determine fx(x|y=y2) Ans: 1d(x-x2) c) Determine fy(y|x=x1) Ans: (1/3)d(y-y1)+(2/3)d(y-y3) d) Determine fx(y|x=x2) Ans: (3/9)d(y-y1)+(1/9)d(y-y2)+(5/9)d(y-y3) 4.4-JG2 Given fx,y(x,y)=2(1-xy) for 0 a) fx(x|y=0.5) (Point Conditioning) Ans: (4/3)(1-x/2) b) fx(x|0.5
•List three variables (X1, X2, X3) you’d include in a Multiple Regression Model in order to...
•List three variables (X1, X2, X3) you’d include in a Multiple Regression Model in order to better predict an outcome (Y) variable. For example, you might list three variables that could be related to how long a person will live (Y). Or you might list three variables that contribute to a successful restaurant. Your Regression Model should have three variables that will act as “predictors” (X1, X2, X3) of a “criterion” (Y’). Note that the outcome or criterion variable (e.g....
The table to the right contains observed values and expected values in parentheses for two categorical​...
The table to the right contains observed values and expected values in parentheses for two categorical​ variables, X and​ Y, where variable X has three categories and variable Y has two categories. Use the table to complete parts ​(a) and ​(b) below. Upper X 1 Upper X 2 Upper X 3 Upper Y 1 34 left parenthesis 35.67 right parenthesis 43 left parenthesis 44.77 right parenthesis 51 left parenthesis 47.56 right parenthesis Upper Y 2 17 left parenthesis 15.33 right...
Suppose that X1, X2,   , Xn and Y1, Y2,   , Yn are independent random samples from populations with...
Suppose that X1, X2,   , Xn and Y1, Y2,   , Yn are independent random samples from populations with means μ1 and μ2 and variances σ12 and σ22, respectively. It can be shown that the random variable Un = (X − Y) − (μ1 − μ2) σ12 + σ22 n satisfies the conditions of the central limit theorem and thus that the distribution function of Un converges to a standard normal distribution function as n → ∞. An experiment is designed to test...
y   x1   x2   x3   x4 64   74   22   24   17 43   63   29   15   30 51  ...
y   x1   x2   x3   x4 64   74   22   24   17 43   63   29   15   30 51   78   20   9   25 49   52   17   38   29 39   45   12   19   37 Consider the set of dependent and independent variables given below. Perform a best subsets regression and choose the most appropriate model for these data. Find the most appropriate model for the data. Note that the coefficient is 0 for any variable that is not included in the model. y= _____+...
Refer to the following regression output: Predictor Coef SE Coef Constant    30.00 13.70 X1    -7.00 3.60...
Refer to the following regression output: Predictor Coef SE Coef Constant    30.00 13.70 X1    -7.00 3.60 X2 3.00 9.30 X3 -19.00 10.80 Source DF SS MS F   Regression 3.00 8,200.00   Error 25.00     Total 28.00 10,000.00 a. What is the regression equation? (Round the final answers to the nearest whole number. Negative answer should be indicated by a minus sign.) Y′ =  +   X1 +  X2 +  X3 b. If X1 = 4, X2 = 6, and X3 = 8, what is the value of...
The table to the right contains observed values and expected values in parentheses for two categorical​...
The table to the right contains observed values and expected values in parentheses for two categorical​ variables, X and​ Y, where variable X has three categories and variable Y has two categories. Use the table to complete parts​ (a) and​ (b) below. Upper X 1 Upper X 2 Upper X 3 Upper Y 1 33 left parenthesis 34.59 right parenthesis 42 left parenthesis 43.96 right parenthesis 54 left parenthesis 50.45 right parenthesis Upper Y 2 15 left parenthesis 13.41 right...
The data in the accompanying table is from a paper. Suppose that the data resulted from...
The data in the accompanying table is from a paper. Suppose that the data resulted from classifying each person in a random sample of 50 male students and each person in a random sample of 91 female students at a particular college according to their response to a question about whether they usually eat three meals a day or rarely eat three meals a day. Usually Eat 3 Meals a Day Rarely Eat 3 Meals a Day Male 26 24...
Use the dependent variable (labeled Y) and the independent variables (labeled X1, X2, and X3) in...
Use the dependent variable (labeled Y) and the independent variables (labeled X1, X2, and X3) in the data file. Use Excel to perform the regression and correlation analysis to answer the following. Generate a scatterplot for the specified dependent variable (Y) and the X1 independent variable, including the graph of the "best fit" line. Interpret. Determine the equation of the "best fit" line, which describes the relationship between the dependent variable and the selected independent variable. Determine the coefficient of...