Question

Let P be a stochastic matrix. Show that λ=1 is an eigenvalue of P. What is...

Let P be a stochastic matrix. Show that λ=1 is an eigenvalue of P. What is the associated eigenvector?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let A be a matrix with an eigenvalue λ that has an algebraic multiplicity of k,...
Let A be a matrix with an eigenvalue λ that has an algebraic multiplicity of k, but a geometric multiplicity of p < k, i.e. there are p linearly independent generalised eigenvectors of rank 1 associated with the eigenvalue λ, equivalently, the eigenspace of λ has a dimension of p. Show that the generalised eigenspace of rank 2 has at most dimension 2p.
Let A be an n × n matrix and let x be an eigenvector of A...
Let A be an n × n matrix and let x be an eigenvector of A corresponding to the eigenvalue λ . Show that for any positive integer m, x is an eigenvector of Am corresponding to the eigenvalue λ m .
The matrix A has an eigenvalue λ with an algebraic multiplicity of 5 and a geometric...
The matrix A has an eigenvalue λ with an algebraic multiplicity of 5 and a geometric multiplicity of 2. Does A have a generalised eigenvector of rank 3 corresponding to λ? What about a generalised eigenvector of rank 5?
A square matrix A is said to be idempotent if A2 = A. Let A be...
A square matrix A is said to be idempotent if A2 = A. Let A be an idempotent matrix. Show that I − A is also idempotent. Show that if A is invertible, then A = I. Show that the only possible eigenvalues of A are 0 and 1.(Hint: Suppose x is an eigenvector with associated eigenvalue λ and then multiply x on the left by A twice.) Let W = col(A). Show that TA(x) = projW x and TI−A(x)...
A square matrix A is said to be idempotent if A2 = A. Let A be...
A square matrix A is said to be idempotent if A2 = A. Let A be an idempotent matrix. Show that I − A is also idempotent. Show that if A is invertible, then A = I. Show that the only possible eigenvalues of A are 0 and 1.(Hint: Suppose x is an eigenvector with associated eigenvalue λ and then multiply x on the left by A twice.) Let W = col(A). Show that TA(x) = projW x and TI−A(x)...
Suppose A is an orthogonal matrix. Show that |λ| = 1 for all eigen- values λ....
Suppose A is an orthogonal matrix. Show that |λ| = 1 for all eigen- values λ. (Hint: start off with an eigenvector and dot-product it with itself. Then cleverly insert A and At into the dot-product.) b) Suppose P is an orthogonal projection. Show that the only possible eigenvalues are 0 and 1. (Hint: start off with an eigenvector and write down the definition. Then apply P to both sides.) An n×n matrix B is symmetric if B = Bt....
We say the a matrix A is similar to a matrix B if there is some...
We say the a matrix A is similar to a matrix B if there is some invertible matrix P so that B=P^-1 AP. Show that if A and B are similar matrices and b is an eigenvalue for B, then b is also an eigenvalue for A. How would an eigenvector for B associated with b compare to an eigenvector for A?
Assume A is an invertible matrix 1. prove that 0 is not an eigenvalue of A...
Assume A is an invertible matrix 1. prove that 0 is not an eigenvalue of A 2. assume λ is an eigenvalue of A. Show that λ^(-1) is an eigenvalue of A^(-1)
Let ? be an eigenvalue of the ? × ? matrix A. Prove that ? +...
Let ? be an eigenvalue of the ? × ? matrix A. Prove that ? + 1 is an eigenvalue of the matrix ? + ?? .
v is an eigenvector with eigenvalue 5 for the invertible matrix A. Is v an eigenvector...
v is an eigenvector with eigenvalue 5 for the invertible matrix A. Is v an eigenvector for A^-2? Show why/why not.