Question

Suppose that we draw two cards from a standard deck of 52 playing cards, where ace,...

Suppose that we draw two cards from a standard deck of 52 playing cards, where ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, jack, queen and king each appear four times (once in each suit). Suppose that it is equally likely that we draw any card remaining in the deck.

Let X be the value of the first card, where we count aces as 1, jacks as 11, queens as 12, and kings as 13. Let Y be the value of the first card, with the same rules for numerical values. Why is Pr(Y= 13|X= 13) <Pr(Y= 13|X<13)? (You should be able to explain this without calculating the exact values of these probabilities) and then calculate the exact values of Pr(Y= 13|X= 13) and Pr(Y= 13|X<13) and Pr(Y= 13) using the same variables X and Y from the last problem.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
he following question involves a standard deck of 52 playing cards. In such a deck of...
he following question involves a standard deck of 52 playing cards. In such a deck of cards there are four suits of 13 cards each. The four suits are: hearts, diamonds, clubs, and spades. The 26 cards included in hearts and diamonds are red. The 26 cards included in clubs and spades are black. The 13 cards in each suit are: 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King, and Ace. This means there are four...
The following question involves a standard deck of 52 playing cards. In such a deck of...
The following question involves a standard deck of 52 playing cards. In such a deck of cards there are four suits of 13 cards each. The four suits are: hearts, diamonds, clubs, and spades. The 26 cards included in hearts and diamonds are red. The 26 cards included in clubs and spades are black. The 13 cards in each suit are: 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King, and Ace. This means there are four...
The following question involves a standard deck of 52 playing cards. In such a deck of...
The following question involves a standard deck of 52 playing cards. In such a deck of cards there are four suits of 13 cards each. The four suits are: hearts, diamonds, clubs, and spades. The 26 cards included in hearts and diamonds are red. The 26 cards included in clubs and spades are black. The 13 cards in each suit are: 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King, and Ace. This means there are four...
Suppose we draw two cards out of a deck of 52 cards. If the two cards...
Suppose we draw two cards out of a deck of 52 cards. If the two cards make a pair of “face” cards (jacks, queens, or kings), you collect $200; if they makes a pair of aces, you collect an amazing $1,000; if they make a pair but not a pair of face cards or aces, you collect $100; otherwise you lose $13. In terms of profits and statistics, should you play the game? Why or why not?
Suppose you are about to draw two cards at a random from a deck of playing...
Suppose you are about to draw two cards at a random from a deck of playing cards. Note that there are 52 cards in a deck. Find the following probabilities. a. What is the probability of getting a Jack and then a King (with replacement)? b. What is the probability of getting a Heart or Jack and then a 2 (with replacement)? c. What is the probability of getting an Ace and then a Queen (without replacement)? d. What is...
A deck of playing cards has 52 cards. There are four suits (clubs, spades, hearts, and...
A deck of playing cards has 52 cards. There are four suits (clubs, spades, hearts, and diamonds). Each suit has 13 cards. Jacks, Queens, and Kings are called picture cards. Suppose you select three cards from the deck without replacement. a. Find the probability of getting a heart only on your second card. Round answer to three decimal places b Find the probability of selecting a Jack and a heart . Round answer to three decimal places. c. Find the...
Probabilities with a deck of cards. There are 52 cards in a standard deck of cards....
Probabilities with a deck of cards. There are 52 cards in a standard deck of cards. There are 4 suits (Clubs, Hearts, Diamonds, and Spades) and there are 13 cards in each suit. Clubs/Spades are black, Hearts/Diamonds are red. There are 12 face cards. Face cards are those with a Jack (J), King (K), or Queen (Q) on them. For this question, we will consider the Ace (A) card to be a number card (i.e., number 1). Then for each...
I draw a card from the same, previous deck of cards. This deck as 4 Kings,...
I draw a card from the same, previous deck of cards. This deck as 4 Kings, 4 Queens, and 4 Jacks. After I draw my first card, a Queen, I place the card back into the deck. I then draw a second card. True or False: In this scenario, the first draw and the second draw are conditional probabilities.
. Consider 5-card hands from a standard 52-card deck of cards (and consider hands as sets,...
. Consider 5-card hands from a standard 52-card deck of cards (and consider hands as sets, so that the same cards in different orders are the same hand). In your answers to following questions you may use binomial coefficients and/or factorials. (Recall that there are 4 Aces, 4 Kings, and 4 Queens in the deck of cards) a) How many different 5-card hands are there? b) How many hands are there with no Aces? c) How many hands are there...
A person removes two aces, a king, two queens, and two jacks from a deck of...
A person removes two aces, a king, two queens, and two jacks from a deck of 52 playing cards, and draws, without replacement, two more cards from the deck. Find the probability that the person will draw two aces, two kings, or an ace and a king.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT