Question

For the attached data set, create a multiple linear regression equation with profit as the dependent...

For the attached data set, create a multiple linear regression equation with profit as the dependent variable and R&D spend, Administration expenses and Marketing spend as the independent variables.

Please answer these 3 questions below.

1. Comment on the adequacy of the model.

2. Identify the predictors that are significant.

3. Interpret the coefficient of determination.

R&D Spend($)

Administration ($)

Marketing Spend ($)

Profit ($)

165349

136898

471784

192262

162598

151378

443899

191792

153442

101146

407935

191050

144372

118672

383200

182902

142107

91392

366168

166188

131877

99815

362861

156991

118672

147199

127717

156123

130298

145530

323877

155753

120543

148719

311613

152212

123335

108679

304982

149760

101913

110594

229161

146122

100672

91791

249745

144259

93864

127320

249839

141586

91992

135495

252665

134307

119943

156547

256513

132603

114524

122617

261776

129917

78013

121598

264346

126993

94657

145078

282574

125370

91749

114176

294920

124267

76254

113867

298664

118474

78389

153773

299737

111313

73995

122783

303319

110352

67533

105751

304769

108734

77044

99281

140575

108552

64665

139553

137963

107404

75329

144136

134050

105734

72108

127865

353184

105008

66052

182646

118148

103282

65605

153032

107138

101005

SUMMARY OUTPUT
Regression Statistics
Multiple R 0.96507787 0.96507787
R Square 0.93137529 0.93137529
Adjusted R Square 0.92314032
Standard Error 7895.11433
Observations 29
ANOVA
df SS MS F Significance F
Regression 3 21149545193 7049848398 113.1001 1.13593E-14
Residual 25 1558320756 62332830.24
Total 28 22707865949
Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
Intercept 57559.3856 11367.44409 5.063529246 3.16E-05 34147.69626 80971.07 34147.7 80971.07
R&D Spend($) 0.81119127 0.06324241 12.82669766 1.7E-12 0.680941092 0.941441 0.680941 0.941441
Administration ($) -0.083838 0.069633656 -1.203986514 0.239871 -0.227251182 0.059575 -0.22725 0.059575
Marketing Spend ($) 0.02222515 0.021498499 1.03380026 0.311127 -0.022051834 0.066502 -0.02205 0.066502
RESIDUAL OUTPUT
Observation Predicted Profit ($) Residuals
1 190697.453 1564.377223
2 186631.743 5160.317491
3 182616.369 8434.021238
4 173240.487 9661.50307
5 173311.668 -7123.727744
6 164233.162 -7242.041868
7 157255.942 -1133.4318
8 158253.354 -2500.754169
9 149799.783 2411.987375
10 155274.385 -5514.425192
11 136051.537 10070.41283
12 137078.673 7180.72735
13 128579.277 13006.2432
14 126438.693 7868.656669
15 147432.715 -14830.06457
16 145998.007 -16080.96726
17 116523.578 10469.35166
18 128461.694 -3091.323775
19 128967.869 -4700.968596
20 116507.311 1966.719394
21 114917.893 -3604.872951
22 114030.586 -3678.336242
23 110248.764 -1514.773636
24 114857.564 -6305.523791
25 101381.219 6023.120827
26 109560.721 -3827.181299
27 113182.1 -8173.790205
28 98453.0289 4829.351087
29 100329.246 675.3936851

Homework Answers

Answer #1

1. Comment on the adequacy of the model: From the output we can see that R Square / Adjusted R Square value is very high (0.93/0.92). Where as the range of R Square is in between 0 -1. Large R Square does not measure the appropriateness of the linear model. It does not imply that the regression model will predict accurately. Here residual values are very high as well.

2. Identify the predictors that are significant : Only R&D Spend($) variable is significant at 5% confidence level as P value is

1.7E-12 (<0.05).

3. Interpret the coefficient of determination : coefficient of determination is the ratio between explained variation and total variation. It tells us how much variability can be explained by the model.

PLEASE LET ME KNOW IF YOU HAVE ANY DOUBTS. THANKS!

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
SUMMARY OUTPUT Dependent X variable: all other variables Regression Statistics Independent Y variable: oil usage Multiple...
SUMMARY OUTPUT Dependent X variable: all other variables Regression Statistics Independent Y variable: oil usage Multiple R 0.885464 R Square 0.784046 variation Adjusted R Square 0.76605 Standard Error 85.4675 Observations 40 ANOVA df SS MS F Significance F Regression 3 954738.9 318246.3089 43.56737 4.55E-12 Residual 36 262969 7304.693706 Total 39 1217708 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept -218.31 63.95851 -3.413304572 0.001602 -348.024 -88.596 -348.024 -88.596 Degree Days 0.275079 0.036333 7.571119093 5.94E-09...
(a) Present the regression output below noting the coefficients, assessing the adequacy of the model and...
(a) Present the regression output below noting the coefficients, assessing the adequacy of the model and the p-value of the model and the coefficients individually. SUMMARY OUTPUT Regression Statistics Multiple R 0.19476248 R Square 0.037932424 Adjusted R Square 0.035147858 Standard Error 12.09940236 Observations 694 ANOVA df SS MS F Significance F Regression 2 3988.511973 1994.255986 13.62238235 1.5759E-06 Residual 691 101159.3165 146.3955376 Total 693 105147.8284 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 27.88762549...
SUMMARY OUTPUT Regression Statistics Multiple R 0.84508179 R Square 0.714163232 Adjusted R Square 0.704942691 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.84508179 R Square 0.714163232 Adjusted R Square 0.704942691 Standard Error 9.187149383 Observations 33 ANOVA df SS MS F Significance F Regression 1 6537.363661 6537.363661 77.4535073 6.17395E-10 Residual 31 2616.515127 84.40371378 Total 32 9153.878788 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 61.07492285 3.406335763 17.92980114 6.41286E-18 54.12765526 68.02219044 54.12765526 68.02219044 Time (Y) -0.038369095 0.004359744 -8.800767426 6.17395E-10 -0.047260852 -0.029477338 -0.047260852 -0.029477338 Using your highlighted cells, what is the equation...
SUMMARY OUTPUT Regression Statistics Multiple R 0.92585919 R Square 0.85721525 Adjusted R Square 0.84928276 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.92585919 R Square 0.85721525 Adjusted R Square 0.84928276 Standard Error 14.7134321 Observations 20 ANOVA df SS MS F Significance F Regression 1 23394.2185 23394.2185 108.063881 4.9013E-09 Residual 18 3896.73153 216.485085 Total 19 27290.95 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept -260.93886 39.3752125 -6.626983 3.2026E-06 -343.66312 -178.21461 -343.66312 -178.21461 Height 5.92431175 0.56989864 10.3953779 4.9013E-09 4.72699913 7.12162438 4.72699913 7.12162438 RESIDUAL OUTPUT Observation Predicted Weight Residuals 1 106.368464 8.63153552...
Compare the two regression models. Does it make sense that spending and household debt could each...
Compare the two regression models. Does it make sense that spending and household debt could each be predicted by annual household income? Why or why not? 1. Predicting spending by household income Regression Statistics Multiple R 0.859343186 R Square 0.738470711 Adjusted R Square 0.737149856 Standard Error 1602.157625 Observations 200 ANOVA df SS MS F Significance F Regression 1 1435121315 1435121315 559.085376 1.42115E-59 Residual 198 508247993.2 2566909.056 Total 199 1943369308 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower...
Discuss the strength and the significance of your regression model by using R-square and significance F...
Discuss the strength and the significance of your regression model by using R-square and significance F where α = 0.05. SUMMARY OUTPUT Regression Statistics Multiple R 0.919011822 R Square 0.844582728 Adjusted R Square 0.834446819 Standard Error 163.953479 Observations 50 ANOVA df SS MS F Significance F Regression 3 6719578.309 2239859.44 83.3257999 1.28754E-18 Residual 46 1236514.191 26880.7433 Total 49 7956092.5 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 21.7335244 114.2095971 0.19029508 0.84991523 -208.158471 251.62552...
SUMMARY OUTPUT Regression Statistics Multiple R 0.993709623 R Square 0.987458816 Adjusted R Square 0.987378251 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.993709623 R Square 0.987458816 Adjusted R Square 0.987378251 Standard Error 514.2440271 Observations 471 ANOVA df SS MS F Significance F Regression 3 9723795745 3241265248 12256.7707 0 Residual 467 123496711.4 264446.9194 Total 470 9847292456 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept -267.1127974 42.01832073 -6.357055513 4.8988E-10 -349.68118 -184.54441 -349.68118 -184.54441 Fuel cost (000,000) 0.449917223 0.098292092 4.577349137 6.0451E-06 0.25676768 0.64306676 0.25676768 0.64306676 Salary (000,000) -0.327915884 0.188252958 -1.741889678 0.08218614 -0.6978436...
Using the attached regression output, answer the following: SUMMARY OUTPUT Regression Statistics Multiple R 0.972971 R...
Using the attached regression output, answer the following: SUMMARY OUTPUT Regression Statistics Multiple R 0.972971 R Square 0.946673 Adjusted R Square 0.944355 Standard Error 76.07265 Observations 49 ANOVA df SS MS F Significance F Regression 2 4725757 2362878 408.3046 5.24E-30 Residual 46 266204.2 5787.049 Total 48 4991961 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Intercept -0.46627 14.97924 -0.03113 0.975302 -30.6179 29.68537 X1 0.09548 0.084947 1.123997 0.266846 -0.07551 0.26647 X2 0.896042 0.205319 4.364141 7.16E-05 0.482756 1.309328 a. What...
23. Suppose the classes for an organized set of data are as follows: please fill in...
23. Suppose the classes for an organized set of data are as follows: please fill in the A column and answer B and C. Class A. B. C. Mid-Point What is the value of class width? Into which class is the value 1.515 assigned? 0.235 – 0.875 0.875 – 1.515 1.515 – 2.155 24.Please fill in the blank and answer the following questions: SUMMARY OUTPUT Regression Statistics Multiple R __________ R Square __________ Adjusted R Square 0.125 Standard Error __________...
SUMMARY OUTPUT Regression Statistics Multiple R 0.909785963 R Square 0.827710499 Adjusted R Square 0.826591736 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.909785963 R Square 0.827710499 Adjusted R Square 0.826591736 Standard Error 7.177298036 Observations 156 ANOVA df SS MS F Significance F Regression 1 38112.05194 38112.05194 739.8443652 1.09619E-60 Residual 154 7933.095493 51.5136071 Total 155 46045.14744 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 8.67422449 2.447697434 3.543830365 0.000522385 3.838827439 13.50962154 3.838827439 13.50962154 X Variable 1 0.801382837 0.029462517 27.20008024 1.09619E-60 0.743179986 0.859585688 0.743179986 0.859585688 (d) How much of the variation in...