he following set of data is from a sample of
n equals =6.
7 |
4 |
2 |
7 |
1 |
13 |
a. Compute the mean, median, and mode.
b. Compute the range, variance, standard deviation, and coefficient of variation.
c. Compute the Z scores. Are there any outliers?
d. Describe the shape of the data set.
x | (x-xbar)^2 | |
7 | 1.777777778 | |
4 | 2.777777778 | |
2 | 13.44444444 | |
7 | 1.777777778 | |
1 | 21.77777778 | |
13 | 53.77777778 | |
sum | 34 | 95.33333333 |
mean | 5.666666667 | |
xbar | sum(x)/n | 5.666666667 |
var | (sum(x-xbar)^2/n-1) | 19.06 |
Ansa:
mean=5.66
median=middle most value of data
median=5.5
#arrage the data in increasing order middle most value of x is meddian
=((n/2)+(n/2)+1)/2
=3rd+4th value/2
=(4+7)/2=11/2=5.5
mode.=7
Ansb:
range=Max-minimum
=13-1
=12
variance=19.06
standard deviation=sqrt(vaiance)
=sqrt(19.06)
=4.37
Ansc:
Z-score
x | Z=(x-mean)/std |
7 | 0.304347826 |
4 | -0.38215103 |
2 | -0.839816934 |
7 | 0.304347826 |
1 | -1.068649886 |
13 | 1.677345538 |
#there are no outlier in the data data are lies between (-3 to3)
Ansd:
#hence mean > median hence shape distribution is positively skewed
Get Answers For Free
Most questions answered within 1 hours.