Descriptive Statistics
Find the 34th percentile, P34, from the following data
1200 | 1300 | 1500 | 1700 | 1900 |
2000 | 2100 | 2400 | 2500 | 2700 |
3000 | 3100 | 3300 | 3500 | 3600 |
3700 | 3900 | 4000 | 4300 | 4400 |
4500 | 4700 | 5000 | 5100 | 5300 |
5400 | 5500 | 5800 | 6300 | 6400 |
6500 | 6600 | 6700 | 6800 | 7100 |
7600 | 7900 | 8000 | 8600 | 9000 |
P34 =
Consider , Xi : observations
1200, | 1300, | 1500, | 1700, | 1900, |
2000, | 2100, | 2400, | 2500, | 2700, |
3000, | 3100, | 3300, | 3500, | 3600, |
3700, | 3900, | 4000, | 4300, | 4400, |
4500, | 4700, | 5000, | 5100, | 5300, |
5400, | 5500, | 5800, | 6300, | 6400, |
6500, | 6600, | 6700, | 6800, | 7100, |
7600, | 7900, | 8000, | 8600, |
9000 |
n:Total number of observations=40
Given that all observations are increasing order.
34th percentile =P34 = ((34/100) * (n-1))+1)th observation
P34=(14.26th observation) = 14th observation =3500
34 th percentile = 3500.
Get Answers For Free
Most questions answered within 1 hours.