Question

A new soft drink is being market tested. A sample of 400 individuals participated in the...

A new soft drink is being market tested. A sample of 400 individuals participated in the taste test and 140 indicated that they like the taste. If less than 40% of the population likes the taste of the new soft drink, the company will not begin a national marketing campaign for the product. Set up the appropriate hypotheses and test, using the critical value and p-value approaches, at the .05 level of significance (alpha) whether less than 40% of the population likes the soft drink. State your conclusion about the hypotheses. Should the manufacturer begin marketing the product based on your conclusions? Why or why not?

Homework Answers

Answer #1

Given                      
n = 400       Sample Size          
140 out of 400 individuals like the taste                      
p̂ = 140/400 = 0.35           Sample proportion of individuals who like the taste          
p = 0.4   (40%)             Population (Standardised) proportion          
α = 0.05           Level of significance          
                      
The null and alternative hypothesis are                      
                      
Ho : p = 0.4                      
H1 : p < 0.4                      
                      

This is a left tailed test                      

Test statistic         
We find z, the test statistic as                       
where                       

z = -2.0412                      

p-value             
We find p-value using Standard Normal tables or Excel function NORM.S.DIST                      
p-value = NORM.S.DIST(-2.0412, TRUE)                      
p-value = 0.0206                    
                      
Critical Value of Z                      
We find z-critical using Standard Normal tables or Excel function NORM.S.INV                      
α = 0.05                      
z-critical = NORM.S.INV(0.05)                      
z-critical = -1.645

Rejection Criteria
Reject Ho if calculated test statistic z < -1.645                      
or Reject Ho if p-value < 0.05                      
                      
                      
0.0206 < 0.05                      
That is p-value < α                      
Hence, we Reject Ho                      
Also,                      
-2.0412 < -1.645                      
that is calculated test statistic z < z-critical                      
Hence, we Reject Ho                     
                      
Conclusion :                      
Reject Ho. There is sufficient evidence at α = 0.05, to conclude that less than 40% of the population likes the soft drink  

Since the hypothesis test proves that less than 40% of the population likes the soft drink                   
the manufacturer should not begin marketing the product.  
                   
                      

If you are satisfied with the solution, kindly give a thumbs up.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A new soft drink is being market-tested. A random sample of 100 consumers tasted the new...
A new soft drink is being market-tested. A random sample of 100 consumers tasted the new drink and 65 liked it. Test to see if the company can claim that more than 60% of consumers like the drink. Use α = 0.05. (a) Ho and Ha (b) Test method, test statistic, and p-value (c) Statistical decision and case-specific conclusion
A manufacturer is interested in the output voltage of a power supply used is a PC....
A manufacturer is interested in the output voltage of a power supply used is a PC. Output voltage is assumed to be normally distributed with standard deviation 0.25 Volts, and the manufacturer wishes to test H0: μ = 5 Volts against Ha: μ≠ 5 Volts, using n = 8 units at 5% significance level. If the sample mean is 5.10, then the corresponding p-value is 0.295 0.258 0.05 1.13 ) In testing the hypotheses H0: μ = 200 vs. Ha:...
A soft-drink company is conducting research to select a new design for the can. A random...
A soft-drink company is conducting research to select a new design for the can. A random sample of participants has been selected. Instead of a typical taste test with two different sodas, they gave each participant the same soda in two different cans. One can was predominantly red, and the other predominantly blue. The order was chosen randomly. Participants were asked to rate each drink on a scale of 1 to 10. The data are recorded below.   Rater Red Blue...
A company has just tested the market for a new product. The test indicates that the...
A company has just tested the market for a new product. The test indicates that the product may capture about 40 percent of the market share. It is also expected that 25 percent of the new product’s share will be at the cost of an existing product. The new product can be manufactured in the existing facilities, which could also be used to meet the expected increase in one of the company’s existing products. The company’s financial analyst argues that...
2. A company has just tested the market for a new product. The test indicates that...
2. A company has just tested the market for a new product. The test indicates that the product may capture about 40 percent of the market share. It is also expected that 25 percent of the new product’s share will be at the cost of an existing product. The new product can be manufactured in the existing facilities, which could also be used to meet the expected increase in one of the company’s existing products. The company’s financial analyst argues...
A new drug, Zia, is being tested for lowering blood pressure. The company claims that less...
A new drug, Zia, is being tested for lowering blood pressure. The company claims that less than 10% of users experience side effects. In a clinical trial of 650 randomly selected patients who received Zia, 52 reported side effects. Is there evidence at the ∝= 0.05 significance level to support the company’s claim? a) State the null and alternative hypothesis b) Calculate the test statistic (by hand!) (2 decimal places) c) Reject or Fail to reject the null hypothesis? Why?...
It is believed 30% of a city's population is interested in a new shopping center. A...
It is believed 30% of a city's population is interested in a new shopping center. A developer wants to know if this value is accurate. She commisions a survey of 407 people and finds that 140 are interested in a new shopping center. At the .05 significance level, conduct a full and appropriate hypothesis test for the developer. a) What are the appropriate null and alternative hypotheses? A H0:p^=.3H1:p^<.3 B H0:p^=.3H1:p^>.3 C H0:p=.3H1:p<.3 D H0:p^=.3H1:p^=.3 E H0:p=.3H1:p>.3 F H0:p=.3H1:p≠.3 b)...
A new SAT study course is tested on 12 individuals. Pre-course and post-course scores are recorded....
A new SAT study course is tested on 12 individuals. Pre-course and post-course scores are recorded. Of interest is the average increase in SAT scores. The following data is collected. Conduct a hypothesis test at the 5% level. Pre-course score Post-course score 1200 1340 910 900 1080 1100 840 880 1100 1070 1250 1320 860 860 1330 1370 790 770 990 1040 1110 1200 740 850 What is the test statistic? p value? While her husband spent 2½ hours picking...
A market research firm used a sample of individuals to rate the purchase potential of a...
A market research firm used a sample of individuals to rate the purchase potential of a particular product before and after the individuals saw a new television commercial about the product. The purchase potential ratings were based on a 0 to 10 scale, with higher values indicating a higher purchase potential. The null hypothesis stated that the mean rating "after" would be less than or equal to the mean rating "before." Rejection of this hypothesis would show that the commercial...
A market research firm used a sample of individuals to rate the purchase potential of a...
A market research firm used a sample of individuals to rate the purchase potential of a particular product before and after the individuals saw a new television commercial about the product. The purchase potential ratings were based on a 0 to 10 scale, with higher values indicating a higher purchase potential (meaning people were more likely to buy the product after seeing the commercial). The null hypothesis stated that the mean rating “after” seeing the commercial would be less than...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT