Question

Q19. Consider an ordinary 52-card North American playing deck (4 suits, 13 cards in each suit)....

Q19. Consider an ordinary 52-card North American playing deck (4 suits, 13 cards in each suit).

a) How many different 5−card poker hands can be drawn from the deck?

b) How many different 13−card bridge hands can be drawn from the deck?

c) What is the probability of an all-spade 5−card poker hand?

d) What is the probability of a flush (5−cards from the same suit)?

e) What is the probability that a 5−card poker hand contains exactly 3 Kings and 2 Queens?

f) What is the probability that a 5−card poker hand contains exactly 2 Kings, 2 Queens, and 1 Jack?

If possible please show your work! I'm really struggling with this question.

Homework Answers

Answer #1

We would be looking at the first 4 parts here as:

a) As all 52 cards are distinct here, the number of different 5 card poker hands is computed here as:

= Number of ways to select 5 cards from 52 cards

b) The number of 13 card hands here is computed as:

= Number of ways to select 13 cards from 52 cards

c) The probability of getting an all spade 5 card poker hand is computed here as:

= Number of ways to select 5 spades from 13 spades / Total poker hands possible

d) The probability of a flush hand is computed here as:

= Number of ways to get all spade / hearts / clubs or diamond cards

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A deck of playing cards has 52 = 4 × 13 cards: there are 4 suits...
A deck of playing cards has 52 = 4 × 13 cards: there are 4 suits (two red and two black) and 13 cards in each suit. How many 3-card hands of the following types are there? (1) All 3 of the same suit? ( 2) All 3 cards of different suits? (3) All 3 cards of different value ?
Probabilities with a deck of cards. There are 52 cards in a standard deck of cards....
Probabilities with a deck of cards. There are 52 cards in a standard deck of cards. There are 4 suits (Clubs, Hearts, Diamonds, and Spades) and there are 13 cards in each suit. Clubs/Spades are black, Hearts/Diamonds are red. There are 12 face cards. Face cards are those with a Jack (J), King (K), or Queen (Q) on them. For this question, we will consider the Ace (A) card to be a number card (i.e., number 1). Then for each...
A standard French deck of playing cards has 52 cards, of which, 13are clubs, 13 are...
A standard French deck of playing cards has 52 cards, of which, 13are clubs, 13 are diamonds, 13 are hearts, and 13 are spades. A poker hand consists of 5 cards drawn from a standard deck. A bridge handconsists of 13 cards drawn from a standard deck. (a) How many poker hands will contain 2 clubs, 1 diamond, and 2hearts? (b) How many bridge hands will contain 6 diamonds and 7 spades? (c) How many bridge hands will contain 5...
In a standard 52 card deck of playing cards, each card has one of four suits:...
In a standard 52 card deck of playing cards, each card has one of four suits: spades, heart, club, or diamond. There are 13 cards of each suit. Alison thoroughly shuffles a standard deck, draws a card, then returns it to the deck, and shuffles again. She repeats this process until she has drawn 9 cards. Find the probability that she draws at most 3 spade cards, Use Excel to find the probability.
If you are dealing from a standard deck of 52 cards a) how many different 4-card...
If you are dealing from a standard deck of 52 cards a) how many different 4-card hands could have at least one card from each suit? b)how many different 5-card hands could have at least one spade? c) how many different 5-card hands could have at least two face cards (jacks, queens or kings)?
A deck of playing cards has 52 cards. There are four suits (clubs, spades, hearts, and...
A deck of playing cards has 52 cards. There are four suits (clubs, spades, hearts, and diamonds). Each suit has 13 cards. Jacks, Queens, and Kings are called picture cards. Suppose you select three cards from the deck without replacement. a. Find the probability of getting a heart only on your second card. Round answer to three decimal places b Find the probability of selecting a Jack and a heart . Round answer to three decimal places. c. Find the...
1. A five-card poker hand is dealt from a standard deck of cards. Find the probability...
1. A five-card poker hand is dealt from a standard deck of cards. Find the probability that: a. The hand contains exactly 3 Clubs and exactly 1 Spade. b. The hand contains at least two aces c. The hand contains all cards from the same suit d. The hand contains three cards from one suit and two cards from different suit e. The hand contains no more than one spade
A deck of cards has 52 cards with 4 suits (Hearts, Diamonds, Spades, and Clubs) and...
A deck of cards has 52 cards with 4 suits (Hearts, Diamonds, Spades, and Clubs) and 13 cards in each suit (Ace thru 10, Jack, Queen, and King; the last three are considered face cards). A card is drawn at random from a standard 52-card deck.   What is the probability that the card is a number card given the card is black (Spades and Clubs)? Group of answer choices 6/26 1 - 10/26 20/52 10/13
A standard deck of cards contains 4 suits (Hearts, Diamonds, Spades, and Clubs) each containing 13...
A standard deck of cards contains 4 suits (Hearts, Diamonds, Spades, and Clubs) each containing 13 ranks (Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King) for a total of 52 cards. In a typical game of poker, you are dealt five cards (without replacement) from a deck of 52 cards. How many Full Houses are possible? (A full house is a hand consisting of three of one rank and two of another. For instance, three...
. Consider 5-card hands from a standard 52-card deck of cards (and consider hands as sets,...
. Consider 5-card hands from a standard 52-card deck of cards (and consider hands as sets, so that the same cards in different orders are the same hand). In your answers to following questions you may use binomial coefficients and/or factorials. (Recall that there are 4 Aces, 4 Kings, and 4 Queens in the deck of cards) a) How many different 5-card hands are there? b) How many hands are there with no Aces? c) How many hands are there...