Question

A random variable having a normal distribution with ? = 20 ??? ?? = 9 find...

A random variable having a normal distribution with ? = 20 ??? ?? = 9 find the probabilities that it will:
a. Take on a value less than 17
b. Between 13 and 26

Homework Answers

Answer #1

Solution :

a.

P(x < 17) = P[(x - ) / < (17 - 20) / 9]

= P(z < -0.3333)

= 0.3695

Probability = 0.3695

b.

P(13 < x < 26) = P[(13 - 20)/ 9) < (x - ) /  < (26 - 20) / 9) ]

= P(-0.7778 < z < 0.6667)

= P(z < 0.6667) - P(z < -0.7778)

= 0.7475 - 0.2183

= 0.5292

Probability = 0.5292

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Given a random variable having the normal distribution with mean ? = 7 and ?2 =...
Given a random variable having the normal distribution with mean ? = 7 and ?2 = 49, find the probabilities that it will take on a value: a) greater than 6 b) less than 2 c) between 6 and 18.8
(Please describe each solution step in detail.) Given a random variable having the normal distribution with...
(Please describe each solution step in detail.) Given a random variable having the normal distribution with µ=16.2 and σ 2 = 1.5625, find the probabilities that it will take on a value: a) greater than 16.8; b) less than 14.9; c) between 13.6 and 18.8; d) between 16.5 and 16.7
Let the random variable X follow a normal distribution with µ = 18 and σ2 =...
Let the random variable X follow a normal distribution with µ = 18 and σ2 = 11. Find the probability that X is greater than 10 and less than 17.
1)     let X be a continuous random variable that has a normal distribution with a mean...
1)     let X be a continuous random variable that has a normal distribution with a mean of 40 and a standard  deviation of 5. Find the probability that X assumes a value:        a. between 32 and 35   b. between 41 and 50        c. greater than 43     d. less than 49
Let "Z" be a random variable from the standard normal distribution. Find the value for ?...
Let "Z" be a random variable from the standard normal distribution. Find the value for ? that satisfies each of the following probabilities. (Round all answers to two decimal places) A) P(Z < ?) = 0.6829.     ? =   B) P(Z > ?) = 0.3087.     ? =   C) P(-? < Z < ?) = 0.7402.     ? = ±
2.)Assume random variable Z follows standard normal distribution; find the value of the following probabilities. P(-1<Z<1)...
2.)Assume random variable Z follows standard normal distribution; find the value of the following probabilities. P(-1<Z<1) 3.)Assume random variable Z follows standard normal distribution; find the value of the following probabilities. P(0<Z<1) 4.)Assume random variable Z follows standard normal distribution; find the value of the following probabilities. P(Z>2) 5.)The natural log of growth of yucca tree is approximately normally distributed with mean of 0.053 mm and standard deviation 0.03mm. Determine the probability that a yucca tree has growth less than...
Let the random variable X follow a normal distribution with muμequals=4040 and sigmaσ2equals=6464. a. Find the...
Let the random variable X follow a normal distribution with muμequals=4040 and sigmaσ2equals=6464. a. Find the probability that X is greater than 5050. b. Find the probability that X is greater than 2020 and less than 5252. c. Find the probability that X is less than 4545. d. The probability is 0.30.3 that X is greater than what​ number? e. The probability is 0.070.07 that X is in the symmetric interval about the mean between which two​ numbers?
Suppose that the random sample is taken from a normal distribution N(8,9), and the random sample...
Suppose that the random sample is taken from a normal distribution N(8,9), and the random sample is between 1 to 25. Find the distribution of the sample mean. Find probability that the sample mean is less than or equal to 8.8 and the sample variance is less than or equal to 12.45, where the probabilities are independent. Find probability that the sample mean is less than 8+(.5829)S, where S is the sample standard deviation.
Let z denote a random variable having a normal distribution with μ = 0 and σ...
Let z denote a random variable having a normal distribution with μ = 0 and σ = 1. Determine each of the probabilities below. (Round all answers to four decimal places.) (a) P(z < 0.1) = (b) P(z < -0.1) = (c) P(0.40 < z < 0.84) = (d) P(-0.84 < z < -0.40) = (e) P(-0.40 < z < 0.84) = (f) P(z > -1.25) = (g) P(z < -1.51 or z > 2.50) =
Let z denote a random variable having a normal distribution with μ = 0 and σ...
Let z denote a random variable having a normal distribution with μ = 0 and σ = 1. Determine each of the probabilities below. (Round all answers to four decimal places.) (a) P(z < 0.1) =   (b) P(z < -0.1) =   (c) P(0.40 < z < 0.85) =   (d) P(-0.85 < z < -0.40) =   (e) P(-0.40 < z < 0.85) =   (f) P(z > -1.26) =   (g) P(z < -1.49 or z > 2.50) =
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT