Question

Test the claim that the proportion of children from the low income group that drew the...

Test the claim that the proportion of children from the low income group that drew the nickel too large is greater than the proportion of the high income group that drew the nickel too large. Test at the 0.05 significance level.

18 of 40 children in the low income group drew the nickel too large, and 13 of 35 did in the high income group.

a) If we use LL to denote the low income group and HH to denote the high income group, identify the correct alternative hypothesis.

  • H1:pL<pHH1:pL<pH
  • H1:pL>pHH1:pL>pH
  • H1:pL≠pHH1:pL≠pH
  • H1:μL<μHH1:μL<μH
  • H1:μL≠μHH1:μL≠μH
  • H1:μL>μHH1:μL>μH



b) The test statistic value is (two decimal places):

c) Using the P-value method, the P-value is (4 decimal places):

d) Based on this, we

  • Reject H0H0
  • Fail to reject H0H0



e) Which means

  • There is not sufficient evidence from the sample data to warrant rejection of the claim
  • The sample data supports the claim
  • There is sufficient evidence from the sample data to warrant rejection of the claim
  • There is not sufficient evidence from the sample data to support the claim

Homework Answers

Answer #1

The statistical software output for this problem is:

Hence,

a) H1: pL>pH

b) Test statistic = 0.69

c) P-value = 0.2453

d) Fail to reject Ho

e) There is not sufficient evidence from the sample data to support the claim. Option D is correct.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Test the claim that the proportion of children from the low income group that drew the...
Test the claim that the proportion of children from the low income group that drew the nickel too large is greater than the proportion of the high income group that drew the nickel too large. Test at the 0.01 significance level. 25 of 40 children in the low income group drew the nickel too large, and 11 of 35 did in the high income group. a) If we use LL to denote the low income group and HH to denote...
To begin answering our original question, test the claim that the proportion of children from the...
To begin answering our original question, test the claim that the proportion of children from the low income group that drew the nickel too large is greater than the proportion of the high income group that drew the nickel too large. Test at the 0.01 significance level. Recall 13 of 40 children in the low income group drew the nickel too large, and 7 of 35 did in the high income group. a) If we use LL to denote the...
Given p^ = 0.4571 and N = 35 for the high income group, Test the claim...
Given p^ = 0.4571 and N = 35 for the high income group, Test the claim that the proportion of children in the high income group that drew the nickel too large is smaller than 50%. Test at the 0.1 significance level. a) Identify the correct alternative hypothesis: p=.50p=.50 p>.50p>.50 μ>.50μ>.50 μ=.50μ=.50 p<.50p<.50 μ<.50μ<.50 Correct Give all answers correct to 3 decimal places. b) The test statistic value is: −.507   c) Using the P-value method, the P-value is: 0.305 d)...
Given the sample mean = 21.15, sample standard deviation = 4.7152, and N = 40 for...
Given the sample mean = 21.15, sample standard deviation = 4.7152, and N = 40 for the low income group, Test the claim that the mean nickel diameter drawn by children in the low income group is greater than 21.21 mm. Test at the 0.1 significance level. a) Identify the correct alternative hypothesis: p=21.21p=21.21 μ>21.21μ>21.21 μ=21.21μ=21.21 μ<21.21μ<21.21 p<21.21p<21.21 p>21.21p>21.21 Give all answers correct to 3 decimal places. b) The test statistic value is:      c) Using the Traditional method, the critical...
Given the sample mean = 22.325, sample standard deviation = 5.8239, and N = 40 for...
Given the sample mean = 22.325, sample standard deviation = 5.8239, and N = 40 for the low income group, Test the claim that the mean nickel diameter drawn by children in the low income group is greater than 21.21 mm. Test at the 0.01 significance level. a) Identify the correct alternative hypothesis: μ>21.21μ>21.21 p<21.21p<21.21 p=21.21p=21.21 μ<21.21μ<21.21 p>21.21p>21.21 μ=21.21μ=21.21 Give all answers correct to 3 decimal places. b) The test statistic value is:      c) Using the Traditional method, the critical...
You wish to test the claim that the population proportion is not equal to 0.73 at...
You wish to test the claim that the population proportion is not equal to 0.73 at a significance level of α=0.10α=0.10. You obtain a sample of size 156 in which there are 106 successful observations. What is the critical value for this test? (Report answer accurate to three decimal places.) critical value = ±± What is the test statistic for this sample? (Report answer accurate to three decimal places.) test statistic = The test statistic is... in the critical region...
Identify the P-VALUE in a hypothesis test of the following claim and sample data: Claim: "The...
Identify the P-VALUE in a hypothesis test of the following claim and sample data: Claim: "The average annual household income in Warren County is $47,500." A random sample of 86 households from this county is obtained, and they have an average annual income of $48,061 with a standard deviation of $2,351. Test the claim at the 0.02 significance level. a. 0.013 b. 0.015 c. 0.030 d. 0.027 Identify the CONCLUSION of a hypothesis test of the following claim and sample...
You wish to test the following claim (H1) at a significance level of α=0.10.       Ho:p=0.33       H1:p≠0.33...
You wish to test the following claim (H1) at a significance level of α=0.10.       Ho:p=0.33       H1:p≠0.33 You obtain a sample of size n=357 in which there are 146 successful observations. What is the test statistic for this sample? (Report answer accurate to three decimal places.) test statistic = What is the p-value for this sample? (Report answer accurate to four decimal places.) p-value = The p-value is... less than (or equal to) αα greater than αα This test statistic leads...
You wish to test the following claim (H1) at a significance level of α=0.01.       Ho:μ=82.6       H1:μ>82.6...
You wish to test the following claim (H1) at a significance level of α=0.01.       Ho:μ=82.6       H1:μ>82.6 You believe the population is normally distributed, but you do not know the standard deviation. You obtain the following sample of data: data 84.2 79.3 95 87.8 81.6 86.2 82.9 112.6 102.1 85 96.7 67.3 What is the critical value for this test? (Report answer accurate to three decimal places.) critical value = What is the test statistic for this sample? (Report answer accurate...
You wish to test the following claim (Ha) at a significance level of α=0.10   Ho:p=0.46       Ha:p>0.46...
You wish to test the following claim (Ha) at a significance level of α=0.10   Ho:p=0.46       Ha:p>0.46 You obtain a sample of size n=648in which there are 322 successful observations. Determine the test statistic formula for this test. What is the test statistic for this sample? (Report answer accurate to three decimal places.) test statistic = What is the p-value for this sample? (Report answer accurate to four decimal places.) p-value = The p-value is... less than (or equal to) αα...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT