Question

X follows a normal distribution with mu = 4.7 and sigma = 1.1. P(3.05 < X...

X follows a normal distribution with mu = 4.7 and sigma = 1.1. P(3.05 < X < 5.47) to four decimal places is:

Question 7 options: 1) 0.6912 2) 0.3088 3) 0.8088 4) 0.1912

X follows a binomial distribution with n = 11 and p = 0.16. P(X=3) to four decimal places is:

Question 8 options:

1)

0.6758

2)

0.1563

3)

0.0010

4)

0.1675

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Given a normal distribution with mu=103 and sigma?=15 , and given you select a sample of...
Given a normal distribution with mu=103 and sigma?=15 , and given you select a sample of n=9 What is the probability that Upper X overbarX is less than 95 ?
Suppose that x has a binomial distribution with n = 202 and p = 0.47. (Round...
Suppose that x has a binomial distribution with n = 202 and p = 0.47. (Round np and n(1-p) answers to 2 decimal places. Round your answers to 4 decimal places. Round z values to 2 decimal places. Round the intermediate value (σ) to 4 decimal places.) (a) Show that the normal approximation to the binomial can appropriately be used to calculate probabilities about x np n(1 – p) Both np and n(1 – p) (Click to select)≥≤ 5 (b)...
Suppose that x has a binomial distribution with n = 199 and p = 0.47. (Round...
Suppose that x has a binomial distribution with n = 199 and p = 0.47. (Round np and n(1-p) answers to 2 decimal places. Round your answers to 4 decimal places. Round z values to 2 decimal places. Round the intermediate value (σ) to 4 decimal places.) (a) Show that the normal approximation to the binomial can appropriately be used to calculate probabilities about x. np n(1 – p) Both np and n(1 – p) (Click to select) 5 (b)...
Suppose you have a normal distribution with known mu = 11 and sigma = 5. N(11,5)....
Suppose you have a normal distribution with known mu = 11 and sigma = 5. N(11,5). Using the 68,95,99.7 rule, what is the approximate probability that a value drawn from this distribution will be: a.Between 6 and 16? b.Between 1 and 21? c.Greater than 16? d.Less than 1? e.Less than 21?
Suppose you have a normal distribution with known mu = 7 and sigma = 2. N(7,2)....
Suppose you have a normal distribution with known mu = 7 and sigma = 2. N(7,2). Compute the Z---score for: a.X =8 b.X =2 c.X = 5 d.X =6 e.X =3
Compute​ P(X) using the binomial probability formula. Then determine whether the normal distribution can be used...
Compute​ P(X) using the binomial probability formula. Then determine whether the normal distribution can be used to estimate this probability. If​ so, approximate​ P(X) using the normal distribution and compare the result with the exact probability. n=50​, p=0.50​, and x=17 For n=50​, p=0.5​, and X=17​, use the binomial probability formula to find​ P(X). Q: By how much do the exact and approximated probabilities​ differ? A. ____​(Round to four decimal places as​ needed.) B. The normal distribution cannot be used.
1. Assume that x has a normal distribution with the specified mean and standard deviation. Find...
1. Assume that x has a normal distribution with the specified mean and standard deviation. Find the indicated probability. (Round your answer to four decimal places.) μ = 14.3; σ = 3.5 P(10 ≤ x ≤ 26)=? 2.Assume that x has a normal distribution with the specified mean and standard deviation. Find the indicated probability. (Round your answer to four decimal places.) μ = 5.9; σ = 1.1 P(7 ≤ x ≤ 9)=? 3. Assume that x has a normal...
Compute​ P(X) using the binomial probability formula. Then determine whether the normal distribution can be used...
Compute​ P(X) using the binomial probability formula. Then determine whether the normal distribution can be used to estimate this probability. If​ so, approximate​ P(X) using the normal distribution and compare the result with the exact probability. n=54 p=0.4 and x= 17 For nequals=5454​, pequals=0.40.4​, and Xequals=1717​, use the binomial probability formula to find​ P(X). 0.05010.0501 ​(Round to four decimal places as​ needed.) Can the normal distribution be used to approximate this​ probability? A. ​No, because StartRoot np left parenthesis 1...
The random variable X follows a binomial distribution with n=20 and p=0.6. a) What is the...
The random variable X follows a binomial distribution with n=20 and p=0.6. a) What is the expected value of X? Your answer should be an integer. b) What is the probability X equals 10? Include 4 decimal places in your answer. c) What is the probability X is greater than 14? Include 4 decimal places in your answer. d) What is the probability that X is no more than 11? Include 4 decimal places in your answer. e) What is...
Which statements are NOT true about Normal random variable X (X~N(mu, sigma))? X is continuous random...
Which statements are NOT true about Normal random variable X (X~N(mu, sigma))? X is continuous random variable X is discrete random variable Completely determined by mu and sigma Symmetrical about 0 Has about 99% of observations within two sigmas from the mu Out of 50 students surveyed in a study: 35 are undergraduates in which there are 20 from NY, and 15 are graduate students in which there are 5 from NY. What is the probability that if a student...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT