Question

If (x1, . . . , xn) is a sample from an N(μ0, σ2) distribution, where...

If (x1, . . . , xn) is a sample from an N(μ0, σ2) distribution, where σ2 > 0 is unknown and μ0 is known

a.determine the MLE of σ2.

b. show that the mle of σ2 is asymptotically normal

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let X1,.....,Xn be a random sample from N(μ,σ2), and both μ and σ2 are unknown, with...
Let X1,.....,Xn be a random sample from N(μ,σ2), and both μ and σ2 are unknown, with -∞<μ<∞ and σ2 > 0. a. Develop a likelihood ratio test for H0: μ <= μ0 vs. H1: μ > μ0 b. Develop a likelihood ratio test for H0: μ >= μ0 vs. H1: μ < μ0
Suppose that X1,..., Xn∼iid N(μ,σ2). a) Suppose that μ is known. What is the MLE of...
Suppose that X1,..., Xn∼iid N(μ,σ2). a) Suppose that μ is known. What is the MLE of σ? (b) Suppose that σ is known. What is the MLE of μ? (c) Suppose that σ is known, and μ has a prior distribution that is normal with known mean and variance μ0 and σ02. Find the posterior distribution of μ given the data.
Suppose X1, · · · , Xn from a normal distribution N(µ, σ2 ) where µ...
Suppose X1, · · · , Xn from a normal distribution N(µ, σ2 ) where µ is unknown but σ is known. Consider the following hypothesis testing problem: H0 : µ = µ0 vs. Ha : µ > µ0 Prove that the decision rule is that we reject H0 if X¯ − µ0 σ/√ n > Z(1 − α), where α is the significant level, and show that this is equivalent to rejecting H0 if µ0 is less than the...
Suppose X1, . . . , Xn are a random sample from a N(0, σ^2) distribution....
Suppose X1, . . . , Xn are a random sample from a N(0, σ^2) distribution. Find the MLE of σ^2 and show that it is an unbiased efficient estimator.
Let X1,...,Xn be a random sample from a normal distribution where the variance is known and...
Let X1,...,Xn be a random sample from a normal distribution where the variance is known and the mean is unknown.   Find the minimum variance unbiased estimator of the mean. Justify all your steps.
X1, · · · Xn ~ iid N(µ, σ2 ) (a) Derive a 100(1 − α)%...
X1, · · · Xn ~ iid N(µ, σ2 ) (a) Derive a 100(1 − α)% confidence interval for σ2 when µ is unknown. (b) Derive a α−test for σ2 when H0 : σ2 = σ02  vs H1 : σ2 < σ02  Where σ02 > 0 and µ is unknown.
Suppose that X1,..Xn are iid N(0,σ2) where σ>0 is the unknown parameter. with preassigned α in...
Suppose that X1,..Xn are iid N(0,σ2) where σ>0 is the unknown parameter. with preassigned α in (0,1), derive a level α LR test for the null hypothesis H0: σ2 = σ02 against H1: σ2/=σ02 in the implementable form. (Hint: When is the function g(u) = ue1-u, u > 0 increasing? When is it decreasing? Is your test one-sided or two-sided?)
Let X1, . . . , Xn be a random sample from a Poisson distribution. (a)...
Let X1, . . . , Xn be a random sample from a Poisson distribution. (a) Prove that Pn i=1 Xi is a sufficient statistic for λ. (b) The MLE for λ in a Poisson distribution is X. Use this fact and the result of part (a) to argue that the MLE is also a sufficient statistic for λ.
Suppose that X1,...,Xn are iid N(μ,σ2) where μ is unknown but σ is known.  μ>=2. Let z(μ)=μ3....
Suppose that X1,...,Xn are iid N(μ,σ2) where μ is unknown but σ is known.  μ>=2. Let z(μ)=μ3. Find an initial unbiased estimator T for z(μ). Next, derive the Rao-Blackwellized version of T.
Let X1, . . . , Xn be a random sample from a Bernoulli(θ) distribution, θ...
Let X1, . . . , Xn be a random sample from a Bernoulli(θ) distribution, θ ∈ [0, 1]. Find the MLE of the odds ratio, defined by θ/(1 − θ) and derive its asymptotic distribution.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT