Question

Using techniques from an earlier section, we can find a confidence interval for μd. Consider a...

Using techniques from an earlier section, we can find a confidence interval for μd. Consider a random sample of n matched data pairs A, B. Let d = BA be a random variable representing the difference between the values in a matched data pair. Compute the sample mean

d

of the differences and the sample standard deviation sd. If d has a normal distribution or is mound-shaped, or if n ≥ 30, then a confidence interval for μd is as follows.

dE < μd < d + E



where E = tc

sd
n



c = confidence level (0 < c < 1)

tc = critical value for confidence level c and d.f. = n − 1

B: Percent increase
for company
14 18 24 18 6 4 21 37
A: Percent increase
for CEO
29 26 19 14

−4

19 15 30

(a) Using the data above, find a 95% confidence interval for the mean difference between percentage increase in company revenue and percentage increase in CEO salary. (Round your answers to two decimal places.)

lower limit    
upper limit    


(b) Use the confidence interval method of hypothesis testing to test the hypothesis that population mean percentage increase in company revenue is different from that of CEO salary. Use a 5% level of significance.

Since μd = 0 from the null hypothesis is not in the 95% confidence interval, do not reject H0 at the 5% level of significance. The data indicate a difference in population mean percentage increases between company revenue and CEO salaries.Since μd = 0 from the null hypothesis is in the 95% confidence interval, reject H0 at the 5% level of significance. The data do not indicate a difference in population mean percentage increases between company revenue and CEO salaries.    Since μd = 0 from the null hypothesis is in the 95% confidence interval, do not reject H0 at the 5% level of significance. The data do not indicate a difference in population mean percentage increases between company revenue and CEO salaries.Since μd = 0 from the null hypothesis is not in the 95% confidence interval, reject H0 at the 5% level of significance. The data indicate a difference in population mean percentage increases between company revenue and CEO salaries.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Using techniques from an earlier section, we can find a confidence interval for μd. Consider a...
Using techniques from an earlier section, we can find a confidence interval for μd. Consider a random sample of n matched data pairs A, B. Let d = B − A be a random variable representing the difference between the values in a matched data pair. Compute the sample mean d of the differences and the sample standard deviation sd. If d has a normal distribution or is mound-shaped, or if n ≥ 30, then a confidence interval for μd...
Using techniques from an earlier section, we can find a confidence interval for μd. Consider a...
Using techniques from an earlier section, we can find a confidence interval for μd. Consider a random sample of n matched data pairs A, B. Let d = B − A be a random variable representing the difference between the values in a matched data pair. Compute the sample mean d of the differences and the sample standard deviation sd. If d has a normal distribution or is mound-shaped, or if n ≥ 30, then a confidence interval for μd...
Using techniques from an earlier section, we can find a confidence interval for μd. Consider a...
Using techniques from an earlier section, we can find a confidence interval for μd. Consider a random sample of n matched data pairs A, B. Let d = B − A be a random variable representing the difference between the values in a matched data pair. Compute the sample mean d of the differences and the sample standard deviation sd. If d has a normal distribution or is mound-shaped, or if n ≥ 30, then a confidence interval for μd...
In this problem, assume that the distribution of differences is approximately normal. Note: For degrees of...
In this problem, assume that the distribution of differences is approximately normal. Note: For degrees of freedom d.f. not in the Student's t table, use the closest d.f. that is smaller. In some situations, this choice of d.f. may increase the P-value by a small amount and therefore produce a slightly more "conservative" answer. Are America's top chief executive officers (CEOs) really worth all that money? One way to answer this question is to look at row B, the annual...
In this problem, assume that the distribution of differences is approximately normal. Note: For degrees of...
In this problem, assume that the distribution of differences is approximately normal. Note: For degrees of freedom d.f. not in the Student's t table, use the closest d.f. that is smaller. In some situations, this choice of d.f. may increase the P-value by a small amount and therefore produce a slightly more "conservative" answer. Are America's top chief executive officers (CEOs) really worth all that money? One way to answer this question is to look at row B, the annual...
In this problem, assume that the distribution of differences is approximately normal. Note: For degrees of...
In this problem, assume that the distribution of differences is approximately normal. Note: For degrees of freedom d.f. not in the Student's t table, use the closest d.f. that is smaller. In some situations, this choice of d.f. may increase the P-value by a small amount and therefore produce a slightly more "conservative" answer. Are America's top chief executive officers (CEOs) really worth all that money? One way to answer this question is to look at row B, the annual...
In this problem, assume that the distribution of differences is approximately normal. Note: For degrees of...
In this problem, assume that the distribution of differences is approximately normal. Note: For degrees of freedom d.f. not in the Student's t table, use the closest d.f. that is smaller. In some situations, this choice of d.f. may increase the P-value by a small amount and therefore produce a slightly more "conservative" answer. Are America's top chief executive officers (CEOs) really worth all that money? One way to answer this question is to look at row B, the annual...
In this problem, assume that the distribution of differences is approximately normal. Note: For degrees of...
In this problem, assume that the distribution of differences is approximately normal. Note: For degrees of freedom d.f. not in the Student's t table, use the closest d.f. that is smaller. In some situations, this choice of d.f. may increase the P-value by a small amount and therefore produce a slightly more "conservative" answer. Are America's top chief executive officers (CEOs) really worth all that money? One way to answer this question is to look at row B, the annual...
Consider the following hypothesis test. H0: μd ≤ 0 Ha: μd > 0 (a) The following...
Consider the following hypothesis test. H0: μd ≤ 0 Ha: μd > 0 (a) The following data are from matched samples taken from two populations. Compute the difference value for each element. (Use Population 1 − Population 2.) Element Population Difference 1 2 1 21 20 2 28 25 3 18 16 4 20 17 5 26 25 (b) Compute d. (c) Compute the standard deviation sd. (d) Conduct a hypothesis test using α = 0.05. Calculate the test statistic....
Consider the following hypothesis test. H0: μd ≤ 0 Ha: μd > 0 (a) The following...
Consider the following hypothesis test. H0: μd ≤ 0 Ha: μd > 0 (a) The following data are from matched samples taken from two populations. Compute the difference value for each element. (Use Population 1 − Population 2.) Element Population Difference 1 2 1 21 19 2 28 27 3 18 17 4 20 17 5 26 23 (b) Compute d. (c) Compute the standard deviation sd. (d) Conduct a hypothesis test using α = 0.05. Calculate the test statistic....