Question

The diameter of a newly minted coin (in mm) is a random variable with probability density...

The diameter of a newly minted coin (in mm) is a random variable with probability density function ?(?) = { 3/4 (? − 12)(14 − ?) 12 < ? ≤ 14}

{ 0 otherwise}

A. What is the probability that the diameter is less than 12.8?

B. What is the probability that the diameter is greater than 13.5?

C. Find the mean diameter

D. Find the standard deviation of the diameters

E. Find the cumulative distribution function of the diameter

F. The specification for the diameter is 12.8 to 13.1 mm. What is the probability that the specification is met?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The diameter of a rivet (in mm) is a random variable with probability density function ?(?)...
The diameter of a rivet (in mm) is a random variable with probability density function ?(?) = { 3 4 (? − 9)(11 − ?) 9 < ? ≤ 11 0 ??ℎ?????? } a. probability diameter less than 9.8 b.probability greater than 10.5 c. find the mean diameter d. find variance and standard deviation of the diameters
Let the probability density function of the random variable X be f(x) = { e ^2x...
Let the probability density function of the random variable X be f(x) = { e ^2x if x ≤ 0 ;1 /x ^2 if x ≥ 2 ; 0 otherwise} Find the cumulative distribution function (cdf) of X.
2. In the United States, the year each coin was minted is printed on the coin....
2. In the United States, the year each coin was minted is printed on the coin. To find the age of a coin, simply subtract the current year from the year printed on the coin. The ages of circulating pennies are right skewed. Most circulating pennies were minted relatively recently, and extremely old pennies are rare. Assume the ages of circulating pennies have a mean of 30 years and a standard deviation of 9.9 years. a. Based on the information...
- Determine the cumulative distribution function for the random variable with probability density function ?(?) =...
- Determine the cumulative distribution function for the random variable with probability density function ?(?) = 1 − 0.5? for 0 < ? < 2 millimeters. - Determine the mean and variance of the random variable with probability density function
Suppose that the probability density function for the random variable X is given by ??(?) =...
Suppose that the probability density function for the random variable X is given by ??(?) = 1/5000 (10? 3 − ? 4 ) for 0 ≤ ? ≤ 10 What is ?(?)? What is ?????(?) Provide the cumulative distribution function for the random variable X.
A continuous random variable X has the following probability density function F(x) = cx^3, 0<x<2 and...
A continuous random variable X has the following probability density function F(x) = cx^3, 0<x<2 and 0 otherwise (a) Find the value c such that f(x) is indeed a density function. (b) Write out the cumulative distribution function of X. (c) P(1 < X < 3) =? (d) Write out the mean and variance of X. (e) Let Y be another continuous random variable such that  when 0 < X < 2, and 0 otherwise. Calculate the mean of Y.
Consider a continuous random variable X with the probability density function f X ( x )...
Consider a continuous random variable X with the probability density function f X ( x ) = |x|/C , – 2 ≤ x ≤ 1, zero elsewhere. a) Find the value of C that makes f X ( x ) a valid probability density function. b) Find the cumulative distribution function of X, F X ( x ).
Let X be a random variable with probability density function fX(x) = {c(1−x^2)if −1< x <1,...
Let X be a random variable with probability density function fX(x) = {c(1−x^2)if −1< x <1, 0 otherwise}. a) What is the value of c? b) What is the cumulative distribution function of X? c) Compute E(X) and Var(X).
If the probability density function of a random variable X is ce−5∣x∣ , then (a) Compute...
If the probability density function of a random variable X is ce−5∣x∣ , then (a) Compute the value of c. (b) What is the probability that 2 < X ≤ 3? (c) What is the probability that X > 0? (d) What is the probability that ∣X∣ < 1? (e) What is the cumulative distribution function of X? (f) Compute the density function of X3 . (g) Compute the density function of X2 .
The random variable X has probability density function: f(x) = ke^(−x) 0 ≤ x ≤ ln...
The random variable X has probability density function: f(x) = ke^(−x) 0 ≤ x ≤ ln 2 0 otherwise Part a: Determine the value of k. Part b: Find F(x), the cumulative distribution function of X. Part c: Find E[X]. Part d: Find the variance and standard deviation of X. All work must be shown for this question. R-Studio should not be used.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT