Question

Let X ∼ Uniform([a, b]). a). Compute the cumulative distribution function (cdf) of X. b). Prove...

Let X ∼ Uniform([a, b]).

a). Compute the cumulative distribution function (cdf) of X.

b). Prove that E(X) = (a + b)/2.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Compute the Cumulative Distribution function for the following distributions knowing only f(x), E(x), and Var(x) Uniform...
Compute the Cumulative Distribution function for the following distributions knowing only f(x), E(x), and Var(x) Uniform (over (a,b)) Bernoulli Binomial Geometric Negative Binomial
Suppose a random variable X has cumulative distribution function (cdf) F and probability density function (pdf)...
Suppose a random variable X has cumulative distribution function (cdf) F and probability density function (pdf) f. Consider the random variable Y = X?b a for a > 0 and real b. (a) Let G(x) = P(Y x) denote the cdf of Y . What is the relationship between the functions G and F? Explain your answer clearly. (b) Let g(x) denote the pdf of Y . How are the two functions f and g related? Note: Here, Y is...
A random variable X has the cumulative distribution function (cdf) given by F(x) = (1 +...
A random variable X has the cumulative distribution function (cdf) given by F(x) = (1 + e−x ) −1 , −∞ < x < ∞. (i) Find the probability density function (pdf) of X. (ii) Roughly, take 10 points in the range of x (5 points below 0 and 5 points more than 0) and plot the pdf on these 10 points. Does it look like the pdf is symmetric around 0? (iii) Also, find the expected value of X.
Let X have a uniform distribution on (0, 1) and let y = -ln ( x...
Let X have a uniform distribution on (0, 1) and let y = -ln ( x ) a. Construct the CDF of Y graphically b. Find the CDF of Y using CDF method c. Find the PDF of Y using PDF method
Let the probability density function of the random variable X be f(x) = { e ^2x...
Let the probability density function of the random variable X be f(x) = { e ^2x if x ≤ 0 ;1 /x ^2 if x ≥ 2 ; 0 otherwise} Find the cumulative distribution function (cdf) of X.
Let X be a continuous random variable with probability density function (pdf) ?(?) = ??^3, 0...
Let X be a continuous random variable with probability density function (pdf) ?(?) = ??^3, 0 < ? < 2. (a) Find the constant c. (b) Find the cumulative distribution function (CDF) of X. (c) Find P(X < 0.5), and P(X > 1.0). (d) Find E(X), Var(X) and E(X5 ).
X is a continuous random variable with the cumulative distribution function F(x)   = 0               when...
X is a continuous random variable with the cumulative distribution function F(x)   = 0               when x < 0 = x2              when 0 ≤ x ≤ 1 = 1               when x > 1 Compute P(1/4 < X ≤ 1/2) What is f(x), the probability density function of X? Compute E[X]
The probability density function and the cumulative distribution function are related as: Select one: a. The...
The probability density function and the cumulative distribution function are related as: Select one: a. The PDF is the integral of the CDF from negative infinity to the point of interest. b. The PDF is equal to one minus the CDF. c. The CDF is equal to one minus the PDF. d. None of the given answers.
Let X be a random variable with probability density function fX(x) = {c(1−x^2)if −1< x <1,...
Let X be a random variable with probability density function fX(x) = {c(1−x^2)if −1< x <1, 0 otherwise}. a) What is the value of c? b) What is the cumulative distribution function of X? c) Compute E(X) and Var(X).
Show the following: a) Let there be Y with the cumulative distribution function F(y). Let F(Y)=Z....
Show the following: a) Let there be Y with the cumulative distribution function F(y). Let F(Y)=Z. Show that Z~U(0,1) for F(y). b) Let X~U(0,1), and let Y := -ln(X). Show that Y~exp(1)