Question

Let X ∼ Uniform([a, b]). a). Compute the cumulative distribution function (cdf) of X. b). Prove...

Let X ∼ Uniform([a, b]).

a). Compute the cumulative distribution function (cdf) of X.

b). Prove that E(X) = (a + b)/2.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Compute the Cumulative Distribution function for the following distributions knowing only f(x), E(x), and Var(x) Uniform...
Compute the Cumulative Distribution function for the following distributions knowing only f(x), E(x), and Var(x) Uniform (over (a,b)) Bernoulli Binomial Geometric Negative Binomial
Suppose a random variable X has cumulative distribution function (cdf) F and probability density function (pdf)...
Suppose a random variable X has cumulative distribution function (cdf) F and probability density function (pdf) f. Consider the random variable Y = X?b a for a > 0 and real b. (a) Let G(x) = P(Y x) denote the cdf of Y . What is the relationship between the functions G and F? Explain your answer clearly. (b) Let g(x) denote the pdf of Y . How are the two functions f and g related? Note: Here, Y is...
Let X have a uniform distribution on (0, 1) and let y = -ln ( x...
Let X have a uniform distribution on (0, 1) and let y = -ln ( x ) a. Construct the CDF of Y graphically b. Find the CDF of Y using CDF method c. Find the PDF of Y using PDF method
Let the probability density function of the random variable X be f(x) = { e ^2x...
Let the probability density function of the random variable X be f(x) = { e ^2x if x ≤ 0 ;1 /x ^2 if x ≥ 2 ; 0 otherwise} Find the cumulative distribution function (cdf) of X.
Let X be a continuous random variable with probability density function (pdf) ?(?) = ??^3, 0...
Let X be a continuous random variable with probability density function (pdf) ?(?) = ??^3, 0 < ? < 2. (a) Find the constant c. (b) Find the cumulative distribution function (CDF) of X. (c) Find P(X < 0.5), and P(X > 1.0). (d) Find E(X), Var(X) and E(X5 ).
X is a continuous random variable with the cumulative distribution function F(x)   = 0               when...
X is a continuous random variable with the cumulative distribution function F(x)   = 0               when x < 0 = x2              when 0 ≤ x ≤ 1 = 1               when x > 1 Compute P(1/4 < X ≤ 1/2) What is f(x), the probability density function of X? Compute E[X]
Let X be a random variable with probability density function fX(x) = {c(1−x^2)if −1< x <1,...
Let X be a random variable with probability density function fX(x) = {c(1−x^2)if −1< x <1, 0 otherwise}. a) What is the value of c? b) What is the cumulative distribution function of X? c) Compute E(X) and Var(X).
Suppose that X is continuous random variable with PDF f(x) and CDF F(x). (a) Prove that...
Suppose that X is continuous random variable with PDF f(x) and CDF F(x). (a) Prove that if f(x) > 0 only on a single (possibly infinite) interval of the real numbers then F(x) is a strictly increasing function of x over that interval. [Hint: Try proof by contradiction]. (b) Under the conditions described in part (a), find and identify the distribution of Y = F(x).
If the probability density function of a random variable X is ce−5∣x∣ , then (a) Compute...
If the probability density function of a random variable X is ce−5∣x∣ , then (a) Compute the value of c. (b) What is the probability that 2 < X ≤ 3? (c) What is the probability that X > 0? (d) What is the probability that ∣X∣ < 1? (e) What is the cumulative distribution function of X? (f) Compute the density function of X3 . (g) Compute the density function of X2 .
Let X be a random variable with probability density function fX(x) given by fX(x) = c(4...
Let X be a random variable with probability density function fX(x) given by fX(x) = c(4 − x ^2 ) for |x| ≤ 2 and zero otherwise. Evaluate the constant c, and compute the cumulative distribution function. Let X be the random variable. Compute the following probabilities. a. Prob(X < 1) b. Prob(X > 1/2) c. Prob(X < 1|X > 1/2).
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT