This question is
modified from an actual experiment published in a medical journal.
A study claimed that people who eat high-fibre cereal for breakfast
will on average consume fewer calories for lunch than people who do
not eat high-fibre cereal for breakfast. A group of 150 people were
randomly selected. Each person was identified as either a consumer
or a non-consumer of high-fibre cereal at breakfast, and the number
of calories consumed at lunch was measured and recorded. Here are
the data. (Numbers are fictitious.)
(a) Calories consumed at lunch by
high-fibre breakfast
consumers:
568 646
607 555 530 714 593 647 650 498 636 529 565 566 639 551 580
629
589 739 637 568 687 693 683 532 651 681 539 617 584 694 556 667 467
540
596 633 607 566 473 649 622
(b) Calories
consumed at lunch by low-fibre
breakfast consumers:
705 754 740 569 593 637 563 421 514 536
819 741 688 547 723 553 733 812 580 833
706 628 539 710 730 620 664 547 624 644
509 537 725 679 701 679 625 643 566 594
613 748 711 674 672 599 655 693 709 596
582 663 607 505 685 566 466 624 518 750
601 526 816 527 800 484 462 549 554 582
608 541 426 679 663739 603 726 623 788
787 462 773 830 369 717 646 645 747
573 719 480 602 596 642 588 794 583
428 754 632 765 758 663 476 490 573
Test if the result of the study is statistically significant at 5%
significance level.
The data given in the above question seem to indicate that the difference between the two sample variances seems to indicate that the population variances differ. Test to see if this is correct or not at α = 0.05.
(COULD YOU PLEASE DESCRIBE ALL THE STEPS ONE BY ONE IN YOUR CALCULATION?) Thank you in advance for your help.
Following table shows the calculations for sample mean and sd for sample 1:
X1 | (X1-mean)^2 | |
568 | 1297.4404 | |
646 | 1762.3204 | |
607 | 8.8804 | |
555 | 2402.9604 | |
530 | 5478.9604 | |
714 | 12095.6004 | |
593 | 121.4404 | |
647 | 1847.2804 | |
650 | 2114.1604 | |
498 | 11240.2404 | |
636 | 1022.7204 | |
529 | 5628.0004 | |
565 | 1522.5604 | |
566 | 1445.5204 | |
639 | 1223.6004 | |
551 | 2811.1204 | |
580 | 576.9604 | |
629 | 624.0004 | |
589 | 225.6004 | |
739 | 18219.6004 | |
637 | 1087.6804 | |
568 | 1297.4404 | |
687 | 6885.6804 | |
693 | 7917.4404 | |
683 | 6237.8404 | |
532 | 5186.8804 | |
651 | 2207.1204 | |
681 | 5925.9204 | |
539 | 4227.6004 | |
617 | 168.4804 | |
584 | 400.8004 | |
694 | 8096.4004 | |
556 | 2305.9204 | |
667 | 3966.4804 | |
467 | 18774.4804 | |
540 | 4098.5604 | |
596 | 64.3204 | |
633 | 839.8404 | |
607 | 8.8804 | |
566 | 1445.5204 | |
473 | 17166.2404 | |
649 | 2023.2004 | |
622 | 323.2804 | |
Total | 25973 | 172324.9772 |
Sample size: n=43
Following table shows the calculations for sample mean and sd for sample 2:
X2 | (X2-mean)^2 | |
705 | 5150.9329 | |
819 | 34510.4929 | |
706 | 5295.4729 | |
509 | 15433.0929 | |
613 | 409.2529 | |
582 | 2624.5129 | |
601 | 1038.7729 | |
608 | 636.5529 | |
787 | 23645.2129 | |
573 | 3627.6529 | |
428 | 42119.3529 | |
754 | 14585.3929 | |
741 | 11614.3729 | |
628 | 27.3529 | |
537 | 9260.2129 | |
748 | 13172.1529 | |
663 | 886.2529 | |
526 | 11498.2729 | |
541 | 8506.3729 | |
462 | 29319.7129 | |
719 | 7356.4929 | |
754 | 14585.3929 | |
740 | 11399.8329 | |
688 | 2999.7529 | |
539 | 8879.2929 | |
725 | 8421.7329 | |
711 | 6048.1729 | |
607 | 688.0129 | |
816 | 33404.8729 | |
426 | 42944.2729 | |
773 | 19535.6529 | |
480 | 23479.4329 | |
632 | 1.5129 | |
569 | 4125.4929 | |
547 | 7435.6129 | |
710 | 5893.6329 | |
679 | 2094.8929 | |
674 | 1662.1929 | |
505 | 16442.9329 | |
527 | 11284.8129 | |
679 | 2094.8929 | |
830 | 38718.4329 | |
602 | 975.3129 | |
765 | 17363.3329 | |
593 | 1618.4529 | |
723 | 8058.6529 | |
730 | 9364.4329 | |
701 | 4592.7729 | |
672 | 1503.1129 | |
685 | 2680.1329 | |
800 | 27812.2329 | |
663 | 886.2529 | |
739 | 11187.2929 | |
369 | 69817.4929 | |
596 | 1386.0729 | |
758 | 15567.5529 | |
637 | 14.2129 | |
553 | 6436.8529 | |
620 | 175.0329 | |
679 | 2094.8929 | |
599 | 1171.6929 | |
566 | 4519.8729 | |
484 | 22269.5929 | |
603 | 913.8529 | |
717 | 7017.4129 | |
642 | 76.9129 | |
663 | 886.2529 | |
563 | 4932.2529 | |
733 | 9954.0529 | |
664 | 946.7929 | |
625 | 67.7329 | |
655 | 473.9329 | |
466 | 27965.8729 | |
462 | 29319.7129 | |
726 | 8606.2729 | |
646 | 163.0729 | |
588 | 2045.7529 | |
476 | 24721.2729 | |
421 | 45041.5729 | |
812 | 31958.7129 | |
547 | 7435.6129 | |
643 | 95.4529 | |
693 | 3572.4529 | |
624 | 85.1929 | |
549 | 7094.6929 | |
623 | 104.6529 | |
645 | 138.5329 | |
794 | 25846.9929 | |
490 | 20514.8329 | |
514 | 14215.7929 | |
580 | 2833.4329 | |
624 | 85.1929 | |
566 | 4519.8729 | |
709 | 5741.0929 | |
518 | 13277.9529 | |
554 | 6277.3929 | |
788 | 23953.7529 | |
747 | 12943.6129 | |
583 | 2523.0529 | |
573 | 3627.6529 | |
536 | 9453.6729 | |
833 | 39908.0529 | |
644 | 115.9929 | |
594 | 1538.9929 | |
596 | 1386.0729 | |
750 | 13635.2329 | |
582 | 2624.5129 | |
Total | 67756 | 1130995.16 |
Sample size: n=107
Null hypothesis:
Alternative hypothesis is claim.
Since it is not given that variances are equal so degree of freedom of the test is
So df is 122.
And test statistics will be
The p-value is: 0.0386
Since p-value is less than 0.05 so we reject the null hypothesis. That is we can conclude that the result of the study is statistically significant at 5% significance level.
Get Answers For Free
Most questions answered within 1 hours.