Question

Suppose that the birth weights of infants are Normally distributed with mean 120 ounces and a...

Suppose that the birth weights of infants are Normally distributed with mean 120 ounces
and a standard deviation of 18 ounces. (Note: 1 pound = 16 ounces.)
a) Find the probability that a randomly selected infant will weight less than 5 pounds.
b) What percent of babies weigh between 8 and 10 pounds at birth?
c) How much would a baby have to weigh at birth in order for him to weight in the top
10% of all infants?
d) Suppose we take a random sample of 100 babies at birth. What is the mean of their
average weight?
e) Suppose we take a random sample of 100 babies at birth. What is the standard
deviation of their average weight?
f) What is the probability that the average weight of the 100 babies (from the previous
part) will exceed 8 pounds?
g) Use Chebyshev to find an upper bound for the probability that the average weight
of 100 randomly selected babies will exceed 9.75 pounds.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose birth weights of human babies are normally distributed with a mean of 120 ounces and...
Suppose birth weights of human babies are normally distributed with a mean of 120 ounces and a stdev of 16 ounces (1lb = 16 ounces). 1. What is the probability that a baby is at least 9 lbs 11 ounces? 2. What is the probability that a baby weighs less than 10 lbs (160 ounces)? 3. What weight is the 90th percentile?
The birth weight of newborn babies is normally distributed with a mean of 7.5 lbs and...
The birth weight of newborn babies is normally distributed with a mean of 7.5 lbs and a standard deviation of 1.2 lbs. a. Find the probability that a randomly selected newborn baby weighs between 5.9 and 8.1 pounds. Round your answer to 4 decimal places. b. How much would a newborn baby have to weigh to be in the top 6% for birth weight? Round your answer to 1 decimal place.
It is known that the birth weight of newborn babies in the U.S. has a mean...
It is known that the birth weight of newborn babies in the U.S. has a mean of 7.1 pounds with a standard deviation of 1.5 pounds. Suppose we randomly sample 36 birth certificates from the State Health Department, and record the birth weights of these babies.    The sampling distribution of the average birth weights of random samples of 36 babies has a mean equal to ______ pounds and a standard deviation of ______ pounds. What is the probability the...
It is known that the birth weight of newborn babies in the U.S. has a mean...
It is known that the birth weight of newborn babies in the U.S. has a mean of 7.1 pounds with a standard deviation of 1.5 pounds. Suppose we randomly sample 36 birth certificates from the State Health Department, and record the birth weights of these babies. The sampling distribution of the average birth weights of random samples of 36   babies has a mean equal to ______ pounds and a standard deviation of ______ pounds. What is the probability the average...
Suppose the weights of Farmer Carl's potatoes are normally distributed with a mean of 8.1 ounces...
Suppose the weights of Farmer Carl's potatoes are normally distributed with a mean of 8.1 ounces and a standard deviation of 1.2 ounces. (a) If 5 potatoes are randomly selected, find the probability that the mean weight is less than 9.8 ounces. Round your answer to 4 decimal places. (b) If 8 potatoes are randomly selected, find the probability that the mean weight is more than 9.4 ounces. Round your answer to 4 decimal places.
Suppose the weights of Farmer Carl's potatoes are normally distributed with a mean of 7.9 ounces...
Suppose the weights of Farmer Carl's potatoes are normally distributed with a mean of 7.9 ounces and a standard deviation of 1.3 ounces. (a) If 4 potatoes are randomly selected, find the probability that the mean weight is less than 9.3 ounces. Round your answer to 4 decimal places. (b) If 7 potatoes are randomly selected, find the probability that the mean weight is more than 8.5 ounces. Round your answer to 4 decimal places.
Suppose the weights of Farmer Carl's potatoes are normally distributed with a mean of 7.8 ounces...
Suppose the weights of Farmer Carl's potatoes are normally distributed with a mean of 7.8 ounces and a standard deviation of 1.2 ounces. (a) If 5 potatoes are randomly selected, find the probability that the mean weight is less than 8.9 ounces. Round your answer to 4 decimal places. (b) If 7 potatoes are randomly selected, find the probability that the mean weight is more than 9.2 ounces. Round your answer to 4 decimal places.
Birth weights in the United States have a distribution that is approximately normal with a mean...
Birth weights in the United States have a distribution that is approximately normal with a mean of 3396 g and a standard deviation of 576 g. Apply Table A-2 or statistics technology you can use to answer the following questions: (a) One definition of a premature baby is the the birth weight is below 2500 g. If a baby is randomly selected, find the probability of a birth weight below 2500 g. (b) Another definition of a premature baby is...
Birth weights in the United States have a distribution that is approximately normal with a mean...
Birth weights in the United States have a distribution that is approximately normal with a mean of 3396 g and a standard deviation of 576 g. Apply Table A-2 or statistics technology you can use to answer the following questions: (a) One definition of a premature baby is the the birth weight is below 2500 g. If a baby is randomly selected, find the probability of a birth weight below 2500 g. (b) Another definition of a premature baby is...
Birth weights in the USA are normally distributed with mean of 3420 g and standard deviation...
Birth weights in the USA are normally distributed with mean of 3420 g and standard deviation of 495g. Find the probability that a randomly selected baby weight is between 2450g and 4390g.