Question

Let X be a continuous random variable with the probability density function f(x) = C x,...

Let X be a continuous random variable with the probability density function f(x) = C x, 6 ≤ x ≤ 25, zero otherwise.

a. Find the value of C that would make f(x) a valid probability density function. Enter a fraction (e.g. 2/5): C =

b. Find the probability P(X > 16). Give your answer to 4 decimal places.

c. Find the mean of the probability distribution of X. Give your answer to 4 decimal places.

d. Find the median of the probability distribution of X. Give your answer to 4 decimal places.

Homework Answers

Answer #1

(a) C is got by noting that the Total Probability = 1.

So,

we get:

between the limits 6 to 25.

Applying linits, we get:

So,

C = 2/589

(b)

The Probability Density Function of X is given by:

,

                                  6 X 25

between the limts 16 to 25.

Applying limits, we get:

P(X>16) = 0.6265

(c)

The mean E(x) is given by:

,

between the limits 6 to 25.

Applying limits, we get:
E(X) = 17.4409

(d)

The median got as follows:

between the limits 6 to x.

Applying limits, we get:

So,

x= 18.1797

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider a continuous random variable X with the probability density function f X ( x )...
Consider a continuous random variable X with the probability density function f X ( x ) = |x|/C , – 2 ≤ x ≤ 1, zero elsewhere. a) Find the value of C that makes f X ( x ) a valid probability density function. b) Find the cumulative distribution function of X, F X ( x ).
1 (a) Let f(x) be the probability density function of a continuous random variable X defined...
1 (a) Let f(x) be the probability density function of a continuous random variable X defined by f(x) = b(1 - x2), -1 < x < 1, for some constant b. Determine the value of b. 1 (b) Find the distribution function F(x) of X . Enter the value of F(0.5) as the answer to this question.
A continuous random variable X has the following probability density function F(x) = cx^3, 0<x<2 and...
A continuous random variable X has the following probability density function F(x) = cx^3, 0<x<2 and 0 otherwise (a) Find the value c such that f(x) is indeed a density function. (b) Write out the cumulative distribution function of X. (c) P(1 < X < 3) =? (d) Write out the mean and variance of X. (e) Let Y be another continuous random variable such that  when 0 < X < 2, and 0 otherwise. Calculate the mean of Y.
Let X be a continuous random variable with the following probability density function: f(x) = e^−(x−1)...
Let X be a continuous random variable with the following probability density function: f(x) = e^−(x−1) for x ≥ 1; 0 elsewhere (i) Find P(0.5 < X < 2). (ii) Find the value such that random variable X exceeds it 50% of the time. This value is called the median of the random variable X.
Let X be the random variable with probability density function f(x) = 0.5x for 0 ≤...
Let X be the random variable with probability density function f(x) = 0.5x for 0 ≤ x  ≤ 2 and zero otherwise. Find the mean and standard deviation of the random variable X.
Let X be a random variable with probability density function f(x) = {3/10x(3-x) if 0<=x<=2 .........{0...
Let X be a random variable with probability density function f(x) = {3/10x(3-x) if 0<=x<=2 .........{0 otherwise a) Find the standard deviation of X to four decimal places. b) Find the mean of X to four decimal places. c) Let y=x2 find the probability density function fy of Y.
Let the probability density function of the random variable X be f(x) = { e ^2x...
Let the probability density function of the random variable X be f(x) = { e ^2x if x ≤ 0 ;1 /x ^2 if x ≥ 2 ; 0 otherwise} Find the cumulative distribution function (cdf) of X.
Let X be a continuous random variable with a probability density function fX (x) = 2xI...
Let X be a continuous random variable with a probability density function fX (x) = 2xI (0,1) (x) and let it be the function´ Y (x) = e^−x a. Find the expression for the probability density function fY (y). b. Find the domain of the probability density function fY (y).
Let X be a continuous random variable with probability density function (pdf) ?(?) = ??^3, 0...
Let X be a continuous random variable with probability density function (pdf) ?(?) = ??^3, 0 < ? < 2. (a) Find the constant c. (b) Find the cumulative distribution function (CDF) of X. (c) Find P(X < 0.5), and P(X > 1.0). (d) Find E(X), Var(X) and E(X5 ).
Let X and Y be two continuous random variables with joint probability density function f(x,y) =...
Let X and Y be two continuous random variables with joint probability density function f(x,y) = 6x 0<y<1, 0<x<y, 0 otherwise. a) Find the marginal density of Y . b) Are X and Y independent? c) Find the conditional density of X given Y = 1 /2
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT