Question

Prove that if two jointly distributed random variables are independent, then their covariance is zero

Prove that if two jointly distributed random variables are independent, then their covariance is zero

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove that the expectation of a sum of jointly distributed random variables is the sum of...
Prove that the expectation of a sum of jointly distributed random variables is the sum of their expectations.
Prove that if X and Y are non-negative independent random variables, then X^2 is independent of...
Prove that if X and Y are non-negative independent random variables, then X^2 is independent of Y^2. *** Please prove using independent random variables or variance or linearity of variance, or binomial variance.
Let X and Y be jointly distributed random variables with means, E(X) = 1, E(Y) =...
Let X and Y be jointly distributed random variables with means, E(X) = 1, E(Y) = 0, variances, Var(X) = 4, Var(Y ) = 5, and covariance, Cov(X, Y ) = 2. Let U = 3X-Y +2 and W = 2X + Y . Obtain the following expectations: A.) Var(U): B.) Var(W): C. Cov(U,W): ans should be 29, 29, 21 but I need help showing how to solve.
You are given that X1 and X2 are two independent and identically distributed random variables with...
You are given that X1 and X2 are two independent and identically distributed random variables with a Poisson distribution with mean 2. Let Y = max{X1, X2}. Find P(Y = 1).
Suppose that X and Y are two jointly continuous random variables with joint PDF ??,(?, ?)...
Suppose that X and Y are two jointly continuous random variables with joint PDF ??,(?, ?) = ??                     ??? 0 ≤ ? ≤ 1 ??? 0 ≤ ? ≤ √?                     0                        ??ℎ?????? Compute and plot ??(?) and ??(?) Are X and Y independent? Compute and plot ??(?) and ???(?) Compute E(X), Var(X), E(Y), Var(Y), Cov(X,Y), and Cor.(X,Y)
The sum of independent normally distributed random variables is normally distributed with mean equal to the...
The sum of independent normally distributed random variables is normally distributed with mean equal to the sum of the individual means and variance equal to the sum of the individual variances. If X is the sum of three independent normally distributed random variables with respective means 100, 150, and 200 and respective standard deviations 15, 20, and 25, the probability that X is between 420 and 460 is closest to which of the following?
1) Let the random variables ? be the sum of independent Poisson distributed random variables, i.e.,...
1) Let the random variables ? be the sum of independent Poisson distributed random variables, i.e., ? = ∑ ? (top) ?=1(bottom) ?? , where ?? is Poisson distributed with mean ?? . (a) Find the moment generating function of ?? . (b) Derive the moment generating function of ?. (c) Hence, find the probability mass function of ?. 2)The moment generating function of the random variable X is given by ??(?) = exp{7(?^(?)) − 7} and that of ?...
7. Let X and Y be two independent and identically distributed random variables with expected value...
7. Let X and Y be two independent and identically distributed random variables with expected value 1 and variance 2.56. (i) Find a non-trivial upper bound for P(| X + Y -2 | >= 1) (ii) Now suppose that X and Y are independent and identically distributed N(1;2.56) random variables. What is P(|X+Y=2| >= 1) exactly? Briefly, state your reasoning. (iii) Why is the upper bound you obtained in Part (i) so different from the exact probability you obtained in...
Continuous random variables X1 and X2 with joint density fX,Y(x,y) are independent and identically distributed with...
Continuous random variables X1 and X2 with joint density fX,Y(x,y) are independent and identically distributed with expected value μ. Prove that E[X1+X2] = E[X1] +E[X2].
Calculate the quantity of interest please. a) Let X,Y be jointly continuous random variables generated as...
Calculate the quantity of interest please. a) Let X,Y be jointly continuous random variables generated as follows: Select X = x as a uniform random variable on [0,1]. Then, select Y as a Gaussian random variable with mean x and variance 1. Compute E[Y ]. b) Let X,Y be jointly Gaussian, with mean E[X] = E[Y ] = 0, variances V ar[X] = 1,V ar[Y ] = 1 and covariance Cov[X,Y ] = 0.4. Compute E[(X + 2Y )2].