Calculate the area under the standard normal curve to the left of these values. (Round your answers to four decimal places.)
(a)
z = 1.6
(b)
z = 1.89
(c)
z = 0.60
(d)
z = 4.18
Find the following probabilities for the standard normal random variable z. (Round your answers to four decimal places.)
(a)
P(−1.46 < z < 0.66) =
(b)
P(0.52 < z < 1.76) =
(c)
P(−1.52 < z < −0.49) =
(d)
P(z > 1.32) =
(e)
P(z < −4.36) =
(a)
Find a z0 such that
P(z > z0) = 0.0301.
(Round your answer to two decimal places.)
z0 =
(b)
Find a z0 such that
P(z < z0) = 0.9192.
(Round your answer to two decimal places.)
z0 =
We will find the solution using R-studio
(a)
z = 1.6
> pnorm(1.6)
[1] 0.9452007
so P(Z< 1.6) = 0.9452
(b)
z = 1.89
> pnorm(1.89)
[1] 0.970621
so P(Z< 1.89) = 0.9706
(c)
z = 0.60
> pnorm(0.60)
[1] 0.7257469
so P(Z< 0.60) =0.7258
(d)
z = 4.1
> pnorm(0.41)
[1] 0.659097
so P(Z< 0.41) = 0.6591
Find the following probabilities for the standard normal random variable z. (Round your answers to four decimal places.)
(a)
P(−1.46 < z < 0.66) =0.6732
> round(pnorm(0.66)-pnorm(-1.46),4)
[1] 0.6732
(b)
P(0.52 < z < 1.76) = 0.2623
> round(pnorm(1.76)-pnorm(0.52),4)
[1] 0.2623
(c)
P(−1.52 < z < −0.49) =0.2478
> round(pnorm(-0.49)-pnorm(-1.52),4)
[1] 0.2478
(d)
P(z > 1.32) = 0.0934
> round(1-pnorm(1.32),4)
[1] 0.0934
(e)
P(z < −4.36) = 0
> round(pnorm(-4.36),4)
[1] 0
(a)
Find a z0 such that
P(z > z0) = 0.0301.
> round(qnorm(0.0301),2)
[1] -1.88
z0 = -1.88
(b)
Find a z0 such that
P(z < z0) = 0.9192.
> round(qnorm(0.9192),2)
[1] 1.4
z0 =1.4
Get Answers For Free
Most questions answered within 1 hours.