Question

Consider the following competing hypotheses and accompanying sample data. (You may find it useful to reference...

Consider the following competing hypotheses and accompanying sample data. (You may find it useful to reference the appropriate table: z table or t table)

H0: p1p2 ≥ 0
HA: p1p2 < 0

x1 = 250 x2 = 275
n1 = 400 n2 = 400


a. Calculate the value of the test statistic. (Negative value should be indicated by a minus sign. Round intermediate calculations to at least 4 decimal places and final answer to 2 decimal places.)



b. Find the p-value.

  • p-value < 0.01

  • 0.01 ≤ p-value < 0.025

  • 0.025 ≤ p-value < 0.05

  • 0.05 ≤ p-value < 0.10

  • p-value ≥ 0.10



c. At the 5% significance level, what is the conclusion to the test?

  • Reject H0 since the p-value is less than significance level.

  • Reject H0 since the p-value is greater than significance level.

  • Do not reject H0 since the p-value is less than significance level.

  • Do not reject H0 since the p-value is greater than significance level.



d. Interpret the results at αα = 0.05.

  • We conclude that the population proportions differ.

  • We cannot conclude that the population proportions differ.

  • We conclude that population proportion 2 is greater than population proportion 1.

  • We cannot conclude that population proportion 2 is greater than population proportion 1.

rev: 01_22_2019_QC_CS-154677

This is the last question in the assignment. To submit, use Alt + S. To access other questions, proceed to the question map button.Next Visit question map

Question8of8Total8 of

Homework Answers

Answer #1

The estimate of the sample proportion is ,

The pooled estimate is ,

The null and alternative hypothesis is ,

a.The test statistic is ,

b. The p-value is ,

p-value= ; From standard normal distribution table

0.025 < p-value < 0.05

c.

Reject Ho , since the p-value is less than significance level 0.05

d. Conclusion : We conclude that population proportion 2 is greater than population proportion 1.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the following competing hypotheses and accompanying sample data. (You may find it useful to reference...
Consider the following competing hypotheses and accompanying sample data. (You may find it useful to reference the appropriate table: z table or t table) H0: p1 − p2 = 0.04 HA: p1 − p2 ≠ 0.04 x1 = 154 x2 = 145 n1 = 253 n2 = 380 a. Calculate the value of the test statistic. (Round intermediate calculations to at least 4 decimal places and final answer to 2 decimal places.) Test Statistic ______ b. Find the p-value. 0.025  p-value...
Consider the following competing hypotheses and accompanying sample data. Use Table 1. H0 : P1− P2...
Consider the following competing hypotheses and accompanying sample data. Use Table 1. H0 : P1− P2 = 0.20 HA : P1− P2 ≠ 0.20   x1 = 150 x2 = 130   n1 = 250 n2 = 400 a. Calculate the value of the test statistic. (Round intermediate calculations to at least 4 decimal places and final answer to 2 decimal places.)   Test statistic    b. Approximate the p-value. p-value < 0.01 0.01 ≤ p-value < 0.025 0.025 ≤ p-value < 0.05...
Consider the following competing hypotheses: (You may find it useful to reference the appropriate table: z...
Consider the following competing hypotheses: (You may find it useful to reference the appropriate table: z table or t table) H0: μD ≥ 0; HA: μD < 0 d¯ = −4.0, sD = 5.8, n = 20 The following results are obtained using matched samples from two normally distributed populations: a-1. Calculate the value of the test statistic, assuming that the sample difference is normally distributed. (Negative value should be indicated by a minus sign. Round intermediate calculations to at...
Consider the following competing hypotheses and accompanying sample data drawn independently from normally distributed populations. (You...
Consider the following competing hypotheses and accompanying sample data drawn independently from normally distributed populations. (You may find it useful to reference the appropriate table: z table or t table) H0: μ1 − μ2 = 0 HA: μ1 − μ2 ≠ 0 x−1x−1 = 75 x−2x−2 = 79 σ1 = 11.10 σ2 = 1.67 n1 = 20 n2 = 20 a-1. Calculate the value of the test statistic. (Negative values should be indicated by a minus sign. Round all intermediate...
Consider the following competing hypotheses and accompanying sample data drawn independently from normally distributed populations. (You...
Consider the following competing hypotheses and accompanying sample data drawn independently from normally distributed populations. (You may find it useful to reference the appropriate table: z table or t table) H0: μ1 − μ2 = 0 HA: μ1 − μ2 ≠ 0 x−1x−1 = 57 x−2x−2 = 63 σ1 = 11.5 σ2 = 15.2 n1 = 20 n2 = 20 a-1. Calculate the value of the test statistic. (Negative values should be indicated by a minus sign. Round all intermediate...
Consider the following competing hypotheses and accompanying sample data drawn independently from normally distributed populations. (You...
Consider the following competing hypotheses and accompanying sample data drawn independently from normally distributed populations. (You may find it useful to reference the appropriate table: z table or t table) H0: μ1 − μ2 = 0 HA: μ1 − μ2 ≠ 0 x−1x−1 = 68 x−2x−2 = 80 σ1 = 12.30 σ2 = 1.68 n1 = 15 n2 = 15 a-1. Calculate the value of the test statistic. (Negative values should be indicated by a minus sign. Round all intermediate...
Consider the following competing hypotheses and accompanying sample data. (You may find it useful to reference...
Consider the following competing hypotheses and accompanying sample data. (You may find it useful to reference the appropriate table: z table or t table) H0: μ1 – μ2 = 9 HA: μ1 – μ2 ≠ 9 x−1 = 54 , s1 = 21.6 , n1 = 22 x−2 = 32 , s2 = 15.3, n2 = 18 Assume that the populations are normally distributed with equal variances. a-1. Calculate the value of the test statistic. (Round intermediate calculations to at...
A multinomial experiment produced the following results: (You may find it useful to reference the appropriate...
A multinomial experiment produced the following results: (You may find it useful to reference the appropriate table: chi-square table or F table) Category 1 2 3 4 5 Frequency 57 63 70 55 55 a. Choose the appropriate alternative hypothesis to test if the population proportions differ. All population proportions differ from 0.20. Not all population proportions are equal to 0.20. b. Calculate the value of the test statistic. (Round intermediate calculations to at least 4 decimal places and final...
Consider the following hypotheses: H0: μ ≤ 12.6 HA: μ > 12.6 A sample of 25...
Consider the following hypotheses: H0: μ ≤ 12.6 HA: μ > 12.6 A sample of 25 observations yields a sample mean of 13.4. Assume that the sample is drawn from a normal population with a population standard deviation of 3.2. (You may find it useful to reference the appropriate table: z table or t table) a-1. Find the p-value. p-value < 0.01 0.01 ≤ p-value < 0.025 0.025 ≤ p-value < 0.05 0.05 ≤ p-value < 0.10 p-value ≥ 0.10...
Consider the following hypotheses: H0: μ ≤ 76.7 HA: μ > 76.7 A sample of 41...
Consider the following hypotheses: H0: μ ≤ 76.7 HA: μ > 76.7 A sample of 41 observations yields a sample mean of 78.0. Assume that the sample is drawn from a normal population with a population standard deviation of 4.4. (You may find it useful to reference the appropriate table: z table or t table) a-1. Find the p-value. 0.05 p-value < 0.10 p-value 0.10 p-value < 0.01 0.01 p-value < 0.025 0.025 p-value < 0.05 a-2. What is the...