For the data set below,
(a) Determine the least-squares regression line.
(b) Compute the sum of the squared residuals for the least-squares
regression line.
x 20 30 40 50 60
___________________
y 106 95 82 70 54
(a) Determine the least-squares regression line.
^
y =[]x +[] ( round to four decimal places as needed.)
The statistical software output for this problem is:
Simple linear regression results:
Dependent Variable: y
Independent Variable: x
y = 133 - 1.29 x
Sample size: 5
R (correlation coefficient) = -0.99787352
R-sq = 0.99575156
Estimate of error standard deviation: 1.5383974
Parameter estimates:
Parameter | Estimate | Std. Err. | Alternative | DF | T-Stat | P-value |
---|---|---|---|---|---|---|
Intercept | 133 | 2.0639767 | ≠ 0 | 3 | 64.438711 | <0.0001 |
Slope | -1.29 | 0.048648398 | ≠ 0 | 3 | -26.516803 | 0.0001 |
Analysis of variance table for regression model:
Source | DF | SS | MS | F-stat | P-value |
---|---|---|---|---|---|
Model | 1 | 1664.1 | 1664.1 | 703.14085 | 0.0001 |
Error | 3 | 7.1 | 2.3666667 | ||
Total | 4 | 1671.2 |
Hence,
a) Regression line equation:
= (-1.29) x + 133
b) Sum of Squared residuals = SSE = 7.1
Get Answers For Free
Most questions answered within 1 hours.