Question

(7) A regression analysis was used in a study about perceived strength (str) and body condition...

  1. (7) A regression analysis was used in a study about perceived strength (str) and body condition (cond) among seniors, both measures are in the range of 0-100. Answer questions based on the given output

                                                             Model Summary

Model

R

R Square

Adjusted R Square

Std. Error of the Estimate

1

.880a

.704

.701

2.404

a. Predictors: (Constant), str

ANOVAb

Model

Sum of Squares

df

Mean Square

F

Sig.

1

Regression

688.725

1

688.725

101.665

.002a

Residual

2553.465

414

6.168

Total

3242.190

415

a. Predictors: (Constant), str

b. Dependent Variable: cond

Coefficientsa

Model

Unstandardized Coefficients

Standardized Coefficients

t

Sig.

B

Std. Error

Beta

1

(Constant)

1.96

.392

1.213

.230

str

.93

.24

.461

3.567

.002

a. Dependent Variable: cond

  1. Establish the regression equation with indication of variables x and y.

  1. Is the regression model significant? Why?

  1. Find and explain the R-square of this problem.

  1. Provide an example to illustrate usage of the regression equation established in part a).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Model Summary Model R R Square Adjusted R Square Std. Error of the Estimate 1 .299a...
Model Summary Model R R Square Adjusted R Square Std. Error of the Estimate 1 .299a .089 .088 11.80775 a. Predictors: (Constant), FIRSTT, LASTT, INCOME, AVGGIFT ANOVAa Model Sum of Squares df Mean Square F Sig. 1 Regression 31353.012 4 7838.253 56.219 .000b Residual 319139.342 2289 139.423 Total 350492.354 2293 a. Dependent Variable: TARGET_D b. Predictors: (Constant), FIRSTT, LASTT, INCOME, AVGGIFT Coefficientsa Model Unstandardized Coefficients Standardized Coefficients t Sig. B Std. Error Beta 1 (Constant) .165 1.351 .122 .903 INCOME...
Analyzed the data from the two tables beow. Coefficientsa Model Unstandardized Coefficients Standardized Coefficients t Sig....
Analyzed the data from the two tables beow. Coefficientsa Model Unstandardized Coefficients Standardized Coefficients t Sig. B Std. Error Beta 1 (Constant) 7.029 .059 119.307 .000 Q1. Age .027 .001 .090 17.839 .000 a. Dependent Variable: Trust in Government Index (higher scores=more trust) Model Summary Model R R Square Adjusted R Square Std. Error of the Estimate 1 .090a .008 .008 4.18980 a. Predictors: (Constant), Q1. Age
1. The following output is from a multiple regression analysis that was run on the variables...
1. The following output is from a multiple regression analysis that was run on the variables FEARDTH (fear of death) IMPORTRE (importance of religion), AVOIDDTH (avoidance of death), LAS (meaning in life), and MATRLSM (materialistic attitudes). In the regression analysis, FEARDTH is the criterion variable (Y) and IMPORTRE, AVOIDDTH, LAS, and MATRLSM are the predictors (Xs). The SPSS output is provided below, followed by a number of questions (12 points total). Descriptive Statistics Mean Std. Deviation N feardth 27.0798 8.08365...
Based on the charts below, Determine  whether a statistically reliable oil consumption model can be estimated Variables...
Based on the charts below, Determine  whether a statistically reliable oil consumption model can be estimated Variables Entered/Removeda Model Variables Entered Variables Removed Method 1 Number People, Home Index, Degree Days, Customerb . Enter a. Dependent Variable: Oil Usage b. All requested variables entered. Model Summary Model R R Square Adjusted R Square Std. Error of the Estimate 1 .889a .790 .766 85.445 a. Predictors: (Constant), Number People, Home Index, Degree Days, Customer ANOVAa Model Sum of Squares df Mean Square...
1) Write the regression equation. 2) Explain the value of unstandardized B coefficient. 3) Explain the...
1) Write the regression equation. 2) Explain the value of unstandardized B coefficient. 3) Explain the value of standardized B coefficient. 4) What null hypothesis is being tested? Regression Output - 3 Coefficientsa Model Unstandardized Coefficients Standardized Coefficients t Sig. B Std. Error Beta 1 (Constant) 15162.617 1108.148 13.683 .000 Appraised Land Value 3.496 .054 .793 64.286 .000 a. Dependent Variable: Sale Price
Can the likelihood to choose HP again (q6) be explained by respondents’ perceptions of HP’s quick...
Can the likelihood to choose HP again (q6) be explained by respondents’ perceptions of HP’s quick delivery (q8_3)? Run a simple linear regression in SPSS and paste the output (4 tables below): Variables Entered/Removeda Model Variables Entered Variables Removed Method 1 q8_3b . Enter a. Dependent Variable: q6 b. All requested variables entered. Model Summary Model R R Square Adjusted R Square Std. Error of the Estimate 1 .303a .092 .089 .54315 a. Predictors: (Constant), q8_3 ANOVAa Model Sum of...
The statistical significance of the variable StudFac is ………….. MODEL - Coefficientsa Model Unstandardized Coefficients Standardized...
The statistical significance of the variable StudFac is ………….. MODEL - Coefficientsa Model Unstandardized Coefficients Standardized Coefficients t Sig. B Std. Error Beta 1 (Constant) 14.134 11.080 1.276 .209 Classunder .435 .134 .495 3.255 .002 StudFac -1.056 1.007 .362 -2.916 .006 a. Dependent Variable: Alumnigiving 99% 90% No statistical significance 95%
Model Summary Model R R Square Adjusted R Square      Std. Error of the Estimate 1...
Model Summary Model R R Square Adjusted R Square      Std. Error of the Estimate 1 .816 .666 .629 1.23721 a. Predictors: (Constant),x         ANOVA     Model Sum of Squares df Mean Square F                       Sig Regression Residual Total 27.500 13.776 41.276 1 9 10 27.500 1.531 17.966                 .002b                    a. Dependent Variable: Y                    b. Predictors: (Constant), X Coefficients Model Understand Coefficients B               Std Error Standardized Coefficients      Beta t Sig 1 (Constant)        x 3.001             1.125 .500                 .118 .816 2.667...
Do the following results from SPSS demonstrate a relationship between relationship status (married and single) and...
Do the following results from SPSS demonstrate a relationship between relationship status (married and single) and happiness. In other words, are people more happy when they are married? ANOVAa Model Sum of Squares df Mean Square F Sig. 1 Regression 1.059 1 1.059 .998 .318b Residual 422.531 398 1.062 Total 423.590 399 a. Dependent Variable: Relationship happiness b. Predictors: (Constant), Marital Status Coefficientsa Model Unstandardized Coefficients Standardized Coefficients t Sig. B Std. Error Beta 1 (Constant) 3.957 .081 49.032 .000...
A real estate agent in Athens used regression analysis to investigate the relationship between apartment sales...
A real estate agent in Athens used regression analysis to investigate the relationship between apartment sales prices and the various characteristics of apartments and buildings. The variables collected from a random sample of 25 compartments are as follows: Sale price: The sale price of the apartment (in €) Apartments: Number of apartments in the building Age: Age of the building (in years) Size: Apartment size (area in square meters) Parking spaces: Number of car parking spaces in the building Excellent...