Question

A researcher randomly selects 6 fathers who have adult sons and records the​ fathers' and​ sons'...

A researcher randomly selects 6 fathers who have adult sons and records the​ fathers' and​ sons' heights to obtain the data shown in the table below. Test the claim that sons are taller than their fathers at the alpha equals α=0.10 level of significance. The normal probability plot and boxplot indicate that the differences are approximately normally distributed with no outliers so the use of a paired​ t-test is reasonable.

Observation

1

2

3

4

5

6

Height of father​ (in inches)

71.5

68.2

74.3

67.6

66.7

74.4

Height of son​ (in inches)

73.1

66.3

74.8

69.2

64.4

73.1

Part 1) What are the hypotheses for the​ t-test? Note that population 1 is fathers and population 2 is sons.

Part 2) Find the test statistic.

Part 3) Find the​ P-value.

Homework Answers

Answer #1

(1)

(2)

(3)

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
To test the belief that sons are taller than their​ fathers, a student randomly selects 6...
To test the belief that sons are taller than their​ fathers, a student randomly selects 6 fathers who have adult male children. She records the height of both the father and son in inches and obtains the accompanying data. Are sons taller than their​ fathers? Use the a = 0.1 level of signifigance. Note that a normal probability plot and boxplot of the data indicate that the differences are approximately normally distributed with no outliers. Observation 1 2 3 4...
To test the belief that sons are taller than their​ fathers, a student randomly selects 13...
To test the belief that sons are taller than their​ fathers, a student randomly selects 13 fathers who have adult male children. She records the height of both the father and son in inches and obtains the following data. Are sons taller than their​ fathers? Use the α=0.025 level of significance. ​ Note: A normal probability plot and boxplot of the data indicate that the differences are approximately normally distributed with no outliers. Height of Father   Height of Son 67.9...
To test the belief that sons are taller than their fathers are, a student are randomly...
To test the belief that sons are taller than their fathers are, a student are randomly selects 13 fathers who have adult male children. She records the height of both the father and son in inches and obtains the following data. Are sons taller than their ​fathers? Use the alpha = 0.01 level of significance.​ Note: A normal probability plot and boxplot of the data indicate that the differences are approximately normally distributed with no outliers. Height of Father, Xi...
5. To test the belief that sons are taller than their fathers, a student randomly selects...
5. To test the belief that sons are taller than their fathers, a student randomly selects 13 fathers who have adult male children. She records the height of both the father and son in inches and obtains the data in the table given on the Lab pdf. Is this evidence that sons are taller than their fathers? Test an appropriate hypothesis using a significance level of 0.10 (  = 0.10). You can assume all conditions and assumptions are met. Matched Pair...
To test the belief that sons are taller than their​ fathers, a student randomly selects 13...
To test the belief that sons are taller than their​ fathers, a student randomly selects 13 fathers who have adult male children. She records the height of both the father and son in inches and obtains the following data. Are sons taller than their​ fathers? Use the α=0.01 level of significance.​ Note: A normal probability plot and boxplot of the data indicate that the differences are approximately normally distributed with no outliers. Height of Father(Xi) Height of Son(Yi) 70.5 75.6...
To test the belief that sons are taller than their​ fathers, a student randomly selects 13...
To test the belief that sons are taller than their​ fathers, a student randomly selects 13 fathers who have adult male children. She records the height of both the father and son in inches and obtains the following data. Are sons taller than their​ fathers? Use the alphaequals0.05 level of significance.​ Note: A normal probability plot and boxplot of the data indicate that the differences are approximately normally distributed with no outliers. LOADING... Click the icon to view the table...