Question

American Airlines' flights from Boston to Atlanta are on time
70% of the time. Suppose 8 flights are randomly selected, and the
number on-time flights is recorded. Use the binomial distribution
to compute the following.

**(a)** The probability that exactly 2 flights are on
time is

**(b)** The probability that more than 7 flights are
on time is

**(c)** The probability that at most 4 flights are on
time is

*Round all answers to at least 4 decimal places.*

Answer #1

Given:

American Airlines' flights from Boston to Atlanta are on time 70% of the time.

p = 0.70

n = 8

X~Binomial(n=8, p=0.70)

Therefore

a) The probability that exactly 2 flights are on time is
0.0100

(b) The probability that more than 7 flights are on time is
0.0576

(c) The probability that at most 4 flights are on time is
0.1941

American Airlines' flights from Boston to Dallas are on time 90
% of the time. Suppose 11 flights are randomly selected, and the
number on-time flights is recorded.
1.The probability that at least 2 flights are on time is =
2.The probability that at most 4 flights are on time is =
3.The probability that exactly 9 flights are on time is =

1.United Airlines' flights from Chicago to Atlanta are on time
60 % of the time. Suppose 7 flights are randomly selected, and the
number on-time flights is recorded.
Round answers to 3 significant figures.
The probability that exactly 6 flights are on time is =
The probability that at most 3 flights are on time is =
The probability that at least 5 flights are on time is

American Airlines' flights from Chicago to Seattle are on time
80 % of the time. Suppose 5 flights are randomly selected, and the
number on-time flights is recorded.
1.The probability that at least 2 flights are on time is =
2.The probability that at most 2 flights are on time is =
3.The probability that exactly 2 flights are on time is =

According to American Airlines, Flights 215 from Orlando to Los
Angeles is on time 92% of the time. Randomly select 150 flights and
use the normal approximation to the binomial to approximate the
probability that less than 125 flights are on time.

According to an airline, flights on a certain route are on time
80% of the time. Suppose 20 flights are randomly selected and the
number of on-time flights is recorded. (a) Explain why this is a
binomial experiment. (b) Find and interpret the probability that
exactly 12 flights are on time. (c) Find and interpret the
probability that fewer than 12 flights are on time. (d) Find and
interpret the probability that at least 12 flights are on time.
(e)...

According to an airline, flights on a certain route are on time
75% of the time. Suppose 20 flights are randomly selected and the
number of on-time flights is recorded.
(a) Explain why this is a binomial
experiment.
(b) Determine the values of n and p.
(c) Find and interpret the probability that
exactly 11 flights are on time.
(d) Find and interpret the probability that
fewer than 11 flights are on time.
(e) Find and interpret the probability that...

According
to an? airline, flights on a
certain route are on time
8585?%
of
the time. Suppose
1010
flights
are randomly selected and the number of on time flights is
recorded. Use technology to find the probabilities. Use the Tech
Help button for further assistance.
?(a)
Determine
whether this is a binomial experiment.
?(b)
Find
and interpret the probability that exactly
88
flights
are on time.
?(c)
Find
and interpret the probability that at least
88
flights
are on time....

According to an? airline, flights on a certain route are on time
90?% of the time. Suppose 99
flights are randomly selected and the number of on time flights
is recorded. Use technology to find the probabilities. Use the Tech
Help button for further assistance.
?(a) Determine whether this is a binomial
experiment.
?(b) Find and interpret the probability that
exactly 77 flights are on time.
?(c) Find and interpret the probability that at
least 77 flights are on time....

According to an airline, flights on a certain route are on
time
8585%
of the time. Suppose
88
flights are randomly selected and the number of on time flights
is recorded. Use technology to find the probabilities. Use the Tech
Help button for further assistance.
(a) Determine whether this is a binomial experiment.
(b) Find and interpret the probability that exactly
66
flights are on time.
(c) Find and interpret the probability that at least
66
flights are on time....

According to an airline flights on a certain route are on time 85%
of the time. Suppose 15 flights are randomly selected and the
numbee of on time flights is recorded.
a) Explain why this is a binomial experiment.
b) Find and interpret the probability that exactly 11 flights
are on time.
c) Find and interpret the probability that fewer than 11
flights are on time.
d) Find and interpret the probability that at least 11 flights
are on time....

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 5 minutes ago

asked 19 minutes ago

asked 21 minutes ago

asked 32 minutes ago

asked 40 minutes ago

asked 40 minutes ago

asked 49 minutes ago

asked 58 minutes ago

asked 59 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago