Question

The joint density function of (X, Y ) is f(x, y) = c(x + y), 0...

The joint density function of (X, Y ) is f(x, y) = c(x + y), 0 ≤ y ≤ x ≤ 1.

(1) Find c.

(2) Find the conditional density f(y|x).

(3) Find P(Y > 0.3|X = 0.5).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let X and Y have a joint density function given by f(x; y) = 3x; 0...
Let X and Y have a joint density function given by f(x; y) = 3x; 0 <= y <= x <= 1 (a) Find P(X<2Y). (b) Find cov(X,Y). (c) Find P(X < 1/2 |Y = 1/3). (d) Find P(X = 1/2|Y = 1/3). (e) Find P(X > 1/2|Y > 1/3). (f) Find the conditional expectation E(X|Y = y).
Suppose that the joint density function of X and Y  is given by f (x, y)  ...
Suppose that the joint density function of X and Y  is given by f (x, y)  =  45 xe−3x(y + 5)     x  >  0, y  >  0. (a) Find the conditional density of  X, given Y  =  y. (b) Find the conditional density of Y, given  X  =  x. (c) Find P(Y  >  5 | X  =  4).
Given the joint probability density function f ( x , y ) for 0 < x...
Given the joint probability density function f ( x , y ) for 0 < x < 3 and 0 < y < 2 x^2y/81 Find the conditional probability distribution of X=1 given that Y = 1 f ( x , y ) = x^2 y/ 81 . F i n d the conditional probability distribution of X=1 given that Y = 1. i . e . f (X ∣ y = 1 )( 1 )
The joint probability density function (pdf) of X and Y is given by f(x, y) =...
The joint probability density function (pdf) of X and Y is given by f(x, y) = cx^2 (1 − y), 0 < x ≤ 1, 0 < y ≤ 1, x + y ≤ 1. (a) Find the constant c. (b) Calculate P(X ≤ 0.5). (c) Calculate P(X ≤ Y)
Suppose that the joint probability density function of the random variables X and Y is f(x,...
Suppose that the joint probability density function of the random variables X and Y is f(x, y) = 8 >< >: x + cy^2 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 0 otherwise. (a) Sketch the region of non-zero probability density and show that c = 3/ 2 . (b) Find P(X + Y < 1), P(X + Y = 1) and P(X + Y > 1). (c) Compute the marginal density function of X and Y...
Let X and Y be two continuous random variables with joint probability density function f(x,y) =...
Let X and Y be two continuous random variables with joint probability density function f(x,y) = 6x 0<y<1, 0<x<y, 0 otherwise. a) Find the marginal density of Y . b) Are X and Y independent? c) Find the conditional density of X given Y = 1 /2
2. The joint probability density function of X and Y is given by                               &nbsp
2. The joint probability density function of X and Y is given by                                                  f(x,y) = (6/7)(x² + xy/2), 0 < x < 1, 0 < y < 2.     f(x,y) =0 otherwise a) Compute the marginal densities of X and Y. b) Are X and Y independent. c) Compute the   conditional density function f(y|x) and check restrictions on function you derived d) probability P{X+Y<1}
A joint density function is given by fX,Y (x, y) = ( kx, 0 < x...
A joint density function is given by fX,Y (x, y) = ( kx, 0 < x < 1, 0 < y < 1 0, otherwise. (a) Calculate k (b) Calculate marginal density function fX(x) (c) Calculate marginal density function fY (y) (d) Compute P(X < 0.5, Y < 0.1) (e) Compute P(X < Y ) (f) Compute P(X < Y |X < 0.5) (g) Are X and Y independent random variables? Show your reasoning (no credit for yes/no answer). (h)...
Suppose X, Y, and Z are random variables with the joint density function f(x, y, z)...
Suppose X, Y, and Z are random variables with the joint density function f(x, y, z) = Ce−(0.5x + 0.2y + 0.1z) if x ≥ 0, y ≥ 0, z ≥ 0, and f(x, y, z) = 0 otherwise. (a) Find the value of the constant C. (b) Find P(X ≤ 0.75 , Y ≤ 0.5). (Round answer to five decimal places). (c) Find P(X ≤ 0.75 , Y ≤ 0.5 , Z ≤ 1). (Round answer to six decimal...
For continuous random variables X and Y with joint probability density function. f(x,y) = xe−(x+y) when...
For continuous random variables X and Y with joint probability density function. f(x,y) = xe−(x+y) when x > 0 and y > 0 f(x,y) = 0 otherwise a. Find the conditional density F xly (xly) b. Find the marginal probability density function fX (x) c. Find the marginal probability density function fY (y). d. Explain if X and Y are independent