Question

Let Y ⇠ Gamma(alpha,beta) and conditioned on Y = y, X ⇠ Poisson(y). Find the unconditional...

Let Y ⇠ Gamma(alpha,beta) and conditioned on Y = y, X ⇠ Poisson(y).
Find the unconditional distribution of X in the case that alpha = r is an integer and beta=1-p/p
for p in (0, 1). 
Find the conditional distribution of Y|X = x. (Use Bayes’ rule)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
let X, Y be random variables. Also let X|Y = y ~ Poisson(y) and Y ~...
let X, Y be random variables. Also let X|Y = y ~ Poisson(y) and Y ~ gamma(a,b) is the prior distribution for Y. a and b are also known. 1. Find the posterior distribution of Y|X=x where X=(X1, X2, ... , Xn) and x is an observed sample of size n from the distribution of X. 2. Suppose the number of people who visit a nursing home on a day is Poisson random variable and the parameter of the Poisson...
For the hierarchical model Y |Λ ∼ Poisson(Λ) and Λ ∼ Gamma(α, β), find the marginal...
For the hierarchical model Y |Λ ∼ Poisson(Λ) and Λ ∼ Gamma(α, β), find the marginal distribution, mean, and variance of Y . Show that the marginal distribution of Y is a negative binomial if α is an integer. (b) Show that the three-stage model Y|N∼Binomial(N,p), N|Λ∼Poisson(Λ), andΛ∼Gamma(α,β) leads to the same marginal distribution of Y .
Let N have a Poisson distribution with parameter lander=1. Conditioned on N=n, let X have a...
Let N have a Poisson distribution with parameter lander=1. Conditioned on N=n, let X have a uniform distribution over the integers 0,1,.......,n+1. What is the marginal distribution for X? Step by step and show what definition you use
Let X ~ beta(alpha, beta). Find the population mode of X for alpha > 1 and...
Let X ~ beta(alpha, beta). Find the population mode of X for alpha > 1 and beta > 1.
Let X be a gamma random variable with parameters alpha = 4 and beta = 4....
Let X be a gamma random variable with parameters alpha = 4 and beta = 4. Using Markov's inequality, calculate an upper bound for the probability that X is greater than or equal to 10.
Consider Poisson distribution f(x|θ) = (e^−θ) [(θ^x) / (x!)] for x = 0, 1, 2, ....
Consider Poisson distribution f(x|θ) = (e^−θ) [(θ^x) / (x!)] for x = 0, 1, 2, . . . Let the prior distribution for θ be f(θ) = e^−θ for θ > 0. (a) Show that the posterior distribution is a Gamma distribution. With what parameters? (b) Find the Bayes’ estimator for θ.
Let X follow Poisson distribution with λ = a and Y follow Poisson distribution with λ...
Let X follow Poisson distribution with λ = a and Y follow Poisson distribution with λ = b. X and Y are independent. Define a new random variable as Z=X+Y. Find P(Z=k).
Let X1, X2 be a sample of size 2 from the Gamma (Alpha=2, Lamba = 1/theta)...
Let X1, X2 be a sample of size 2 from the Gamma (Alpha=2, Lamba = 1/theta) distribution X1 = Gamma = x/(theta^2) e^(-x/theta) Derive the joint pdf of Y1=X1 and Y2 = X1+X2 Derive the conditional pdf of Y1 given Y2=y2. Can you name that conditional distribution? It might not have name
Let X,..., Xn be exponential with mean beta. Find UMVUEs for beta, beta^2, beta^3. (Use the...
Let X,..., Xn be exponential with mean beta. Find UMVUEs for beta, beta^2, beta^3. (Use the version of the exponential distribution with PDF p(x)= 1/beta e^(-x/beta) (x>0), and so Mx(t)=(1-beta(t))^-1.)
3. (10pts) Let Y be a continuous random variable having a gamma probability distribution with expected...
3. (10pts) Let Y be a continuous random variable having a gamma probability distribution with expected value 3/2 and variance 3/4. If you run an experiment that generates one-hundred values of Y , how many of these values would you expect to find in the interval [1, 5/2]? 4. (10pts) Let Y be a continuous random variable with density function f(y) = 1 2 e −|y| , −∞ < y < ∞ 0, elsewhere (a) Find the moment-generating function of...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT