Question

The moment generating function for the random variable X is MX(t) = (e^t/ (1−t )) if |t| < 1. Find the variance of X.

Answer #1

Suppose that the moment generating function of a random variable
X is of the form MX (t) = (0.4e^t + 0.6)8 . What is the moment
generating function, MZ(t), of the random variable Z = 2X + 1?
(Hint: think of 2X as the sum two independent random variables).
Find E[X]. Find E[Z ]. Compute E[X] another way - try to recognize
the origin of MX (t) (it is from a well-known distribution)

(i) If a discrete random variable X has a moment generating
function
MX(t) = (1/2+(e^-t+e^t)/4)^2, all t
Find the probability mass function of X. (ii) Let X and Y be two
independent continuous random variables with moment generating
functions
MX(t)=1/sqrt(1-t) and MY(t)=1/(1-t)^3/2, t<1
Calculate E(X+Y)^2

The range of a discrete random variable X is {−1, 0, 1}. Let MX
(t) be the moment generating function of X, and let MX(1) = MX(2) =
0.5. Find the third moment of X, E(X^3).

The range of a discrete random variable X is {−1, 0, 1}. Let
MX(t) be the moment generating function of X, and let MX(1) = MX(2)
= 0.5. Find the third moment of X, E(X^3 )

Let Mx(t) be a moment generating function. Let
Sx (t) = [Mx (t)]2− Mx
(t). Prove that S ′x(0) = µX.

Suppose that a random variable X has the following
moment generating function,
M X (t) = (1 −
3t)−8, t < 1/3. (a)
Find the mean of X (b) Find the Varience of X. Please explain
steps. :) Thanks!

Question 1: Compute the moment generating
function M(t) for a Poisson random variable.
a) Use M’(t) to compute E(X)
b) Use M’’(t) to compute Var(X)

The random variable X has moment generating function
ϕX(t)=(0.44e^t+1−0.44)^8
Provide answers to the following to two decimal places
(a) Evaluate the natural logarithm of the moment generating
function of 3X at the point t=0.4.
(b) Hence (or otherwise) find the expectation of 3X.
(c) Evaluate the natural logarithm of the moment generating
function of 3X+6 at the point t=0.4.

Consider a discrete random variable X with probability mass
function P(X = x) = p(x) = C/3^x, x = 2, 3, 4, . . . a. Find the
value of C. b. Find the moment generating function MX(t). c. Use
your answer from a. to find the mean E[X]. d. If Y = 3X + 5, find
the moment generating function MY (t).

X is a random variable with Moment Generating Function M(t) =
exp(3t + t2).
Calculate P[ X > 3 ]

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 16 minutes ago

asked 20 minutes ago

asked 25 minutes ago

asked 25 minutes ago

asked 31 minutes ago

asked 34 minutes ago

asked 43 minutes ago

asked 52 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago