Question

A computer analysis of 5 pairs of observations results in the least-squares regression equation y =...

A computer analysis of 5 pairs of observations results in the least-squares regression equation y = 2.9091 + 3.0909x, and the standard deviation of the slope is listed as sb1 = 0.886. At α = 0.05, can we conclude that the slope of the regression line, β1, is zero? Use the standard five-step hypothesis testing procedure. Make sure that your last statement is a common sense one. (The final calculated value of t shall be rounded to 4 places to the right of the decimal point and underlined.)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A computer analysis of 5 pairs of observations results in the least-squares regression equation y =...
A computer analysis of 5 pairs of observations results in the least-squares regression equation y = 2.9091 + 3.0909x, and the standard deviation of the slope is listed as sb1 = 0.886. At α = 0.05, can we conclude that the slope of the regression line, β1, is zero? Use the standard five-step hypothesis testing procedure. Make sure that your last statement is a common sense one. (The final calculated value of t shall be rounded to 4 places to...
Exhibit 16-1 In a regression analysis involving 25 observations, the following estimated regression equation was developed....
Exhibit 16-1 In a regression analysis involving 25 observations, the following estimated regression equation was developed. Y=10 - 18X1+ 3X2 + 14X3 Also, the following standard errors and the sum of squares were obtained. Sb1 = 3 Sb2 = 6 Sb3 = 7 SST = 4,800 SSE = 1,296 Refer to Exhibit 16-1. If you want to determine whether or not the coefficients of the independent variables are significant, the critical value of t statistic at α = 0.05 is...
In a regression analysis involving 27 observations, the following estimated regression equation was developed. ŷ =...
In a regression analysis involving 27 observations, the following estimated regression equation was developed. ŷ = 25.2 + 5.5x1 For this estimated regression equation SST = 1,550 and SSE = 530. (a) At α = 0.05, test whether x1  is significant.State the null and alternative hypotheses. H0: β1 ≠ 0 Ha: β1 = 0 H0: β0 ≠ 0 Ha: β0 = 0    H0: β0 = 0 Ha: β0 ≠ 0 H0: β1 = 0 Ha: β1 ≠ 0 Find the value...
In a regression analysis involving 27 observations, the following estimated regression equation was developed. ŷ =...
In a regression analysis involving 27 observations, the following estimated regression equation was developed. ŷ = 25.2 + 5.5x1 For this estimated regression equation SST = 1,600 and SSE = 550. (a) At α = 0.05, test whether x1is significant.State the null and alternative hypotheses. H0: β0 = 0 Ha: β0 ≠ 0 H0: β0 ≠ 0 Ha: β0 = 0    H0: β1 ≠ 0 Ha: β1 = 0 H0: β1 = 0 Ha: β1 ≠ 0 Find the value...
In a regression analysis involving 27 observations, the following estimated regression equation was developed. ŷ =...
In a regression analysis involving 27 observations, the following estimated regression equation was developed. ŷ = 25.2 + 5.5x1 For this estimated regression equation SST = 1,600 and SSE = 550. (a) At α = 0.05, test whether x1 is significant. State the null and alternative hypotheses. H0: β0 = 0 Ha: β0 ≠ 0H0: β0 ≠ 0 Ha: β0 = 0    H0: β1 ≠ 0 Ha: β1 = 0H0: β1 = 0 Ha: β1 ≠ 0 Find the value of...
In a regression analysis involving 30 observations, the following estimated regression equation was obtained. ŷ =...
In a regression analysis involving 30 observations, the following estimated regression equation was obtained. ŷ = 17.6 + 3.8x1 − 2.3x2 + 7.6x3 + 2.7x4 For this estimated regression equation, SST = 1,815 and SSR = 1,780. (a) At α = 0.05, test the significance of the relationship among the variables. State the null and alternative hypotheses. H0: β0 = β1 = β2 = β3 = β4 = 0 Ha: One or more of the parameters is not equal to...
In a regression analysis involving 30 observations, the following estimated regression equation was obtained. ŷ =...
In a regression analysis involving 30 observations, the following estimated regression equation was obtained. ŷ = 17.6 + 3.8x1 − 2.3x2 + 7.6x3 + 2.7x4 For this estimated regression equation, SST = 1,835 and SSR = 1,800. (a)At α = 0.05, test the significance of the relationship among the variables.State the null and alternative hypotheses. -H0: One or more of the parameters is not equal to zero. Ha: β0 = β1 = β2 = β3 = β4 = 0 -H0:...
The estimated regression equation for a model involving two independent variables and 55 observations is: y-hat...
The estimated regression equation for a model involving two independent variables and 55 observations is: y-hat = 55.17 + 1.1X1 - 0.153X2 Other statistics produced for analysis include: SSR = 12370.8 SST = 35963.0 Sb1 = 0.33 Sb2 = 0.20 Interpret b1 and b2 in this estimated regression equation b. Predict y when X1 = 55 and X2 = 70. Compute R-square and Adjusted R-Square. e. Compute MSR and MSE. f. Compute F and use it to test whether the...
The following estimated regression equation based on 10 observations was presented. ŷ = 21.1370 + 0.5509x1...
The following estimated regression equation based on 10 observations was presented. ŷ = 21.1370 + 0.5509x1 + 0.4980x2 Here, SST = 6,724.125, SSR = 6,222.375, sb1 = 0.0814, and sb2 = 0.0565. 1. Compute MSR and MSE. (Round your answers to three decimal places.) MSR= MSE= 2. Compute F and perform the appropriate F test. Use α = 0.05. 2a. State the null and alternative hypotheses. (a) H0: β1 = β2 = 0 Ha: One or more of the parameters...
The following table is the output of simple linear regression analysis. Note that in the lower...
The following table is the output of simple linear regression analysis. Note that in the lower right hand corner of the output we give (in parentheses) the number of observations, n, used to perform the regression analysis and the t statistic for testing H0: β1 = 0 versus Ha: β1 ≠ 0.   ANOVA df SS MS F Significance F   Regression 1     61,091.6455 61,091.6455 .69        .4259   Residual 10     886,599.2711 88,659.9271      Total 11     947,690.9167 (n = 12;...