Question

A study is made of residents in Phoenix and its suburbs concerning the proportion of residents...

A study is made of residents in Phoenix and its suburbs concerning the proportion of residents who subscribe to Sporting News. A random sample of n1 = 90 urban residents showed that r1 = 10 subscribed, and a random sample of n2 = 99 suburban residents showed that r2 = 18 subscribed. Does this indicate that a higher proportion of suburban residents subscribe to Sporting News? Use a 5% level of significance. What are we testing in this problem? single proportion difference of means paired difference single mean difference of proportions (a) What is the level of significance? State the null and alternate hypotheses. H0: p1 = p2; H1: p1 ≠ p2 H0: p1 = p2; H1: p1 > p2 H0: p1 < p2; H1: p1 = p2 H0: p1 = p2; H1: p1 < p2 (b) What sampling distribution will you use? What assumptions are you making? The standard normal. The number of trials is sufficiently large. The Student's t. We assume the population distributions are approximately normal. The standard normal. We assume the population distributions are approximately normal. The Student's t. The number of trials is sufficiently large. What is the value of the sample test statistic? (Test the difference p1 − p2. Do not use rounded values. Round your final answer to two decimal places.) (c) Find (or estimate) the P-value. P-value > 0.250 0.125 < P-value < 0.250 0.050 < P-value < 0.125 0.025 < P-value < 0.050 0.005 < P-value < 0.025 P-value < 0.005 Sketch the sampling distribution and show the area corresponding to the P-value. Maple Generated Plot Maple Generated Plot Maple Generated Plot Maple Generated Plot (d) Based on your answers in parts (a) to (c), will you reject or fail to reject the null hypothesis? Are the data statistically significant at level α? At the α = 0.05 level, we reject the null hypothesis and conclude the data are statistically significant. At the α = 0.05 level, we reject the null hypothesis and conclude the data are not statistically significant. At the α = 0.05 level, we fail to reject the null hypothesis and conclude the data are statistically significant. At the α = 0.05 level, we fail to reject the null hypothesis and conclude the data are not statistically significant. (e) Interpret your conclusion in the context of the application. There is sufficient evidence at the 0.05 level to conclude that the proportion of suburban residents subscribing to Sporting News is higher. There is insufficient evidence at the 0.05 level to conclude that the proportion of suburban residents subscribing to Sporting News is higher.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A study is made of residents in Phoenix and its suburbs concerning the proportion of residents...
A study is made of residents in Phoenix and its suburbs concerning the proportion of residents who subscribe to Sporting News. A random sample of 88 urban residents showed that 13 subscribed, and a random sample of 96 suburban residents showed that 20 subscribed. Does this indicate that a higher proportion of suburban residents subscribe to Sporting News? Use a 1% level of significance. What are we testing in this problem? paired difference single proportion difference of proportions difference of...
A study is made of residents in Phoenix and its suburbs concerning the proportion of residents...
A study is made of residents in Phoenix and its suburbs concerning the proportion of residents who subscribe to Sporting News. A random sample of n1 = 86 urban residents showed that r1 = 14 subscribed, and a random sample of n2 = 97 suburban residents showed that r2 = 20 subscribed. Does this indicate that a higher proportion of suburban residents subscribe to Sporting News? Use a 5% level of significance. What is the value of the sample test...
A study is made of residents in portland and its suburbs concerning the proportion of residents...
A study is made of residents in portland and its suburbs concerning the proportion of residents who subscribe to HBO. A random sample of 88 urban residents showed that 12 subscribed, and a random sample of 97 suburban residents showed that 18 subscribed. Does this indicate that a higher proportion of suburban residents subscribe to HBO? Use a 5% level of significance. a. State the null and alternative hypotheses ?0: ?1: b. What calculator test will you use? List the...
For one binomial experiment, n1 = 75 binomial trials produced r1 = 30 successes. For a...
For one binomial experiment, n1 = 75 binomial trials produced r1 = 30 successes. For a second independent binomial experiment, n2 = 100 binomial trials produced r2 = 50 successes. At the 5% level of significance, test the claim that the probabilities of success for the two binomial experiments differ. (a) Compute the pooled probability of success for the two experiments. (Round your answer to three decimal places.) (b) Check Requirements: What distribution does the sample test statistic follow? Explain....
For one binomial experiment, n1 = 75 binomial trials produced r1 = 45 successes. For a...
For one binomial experiment, n1 = 75 binomial trials produced r1 = 45 successes. For a second independent binomial experiment, n2 = 100 binomial trials produced r2 = 65 successes. At the 5% level of significance, test the claim that the probabilities of success for the two binomial experiments differ. (a) Compute the pooled probability of success for the two experiments. (Round your answer to three decimal places.) (b) Check Requirements: What distribution does the sample test statistic follow? Explain....
In a fishing lodge brochure, the lodge advertises that 75% of its guests catch northern pike...
In a fishing lodge brochure, the lodge advertises that 75% of its guests catch northern pike over 20 pounds. Suppose that last summer 59 out of a random sample of 86 guests did, in fact, catch northern pike weighing over 20 pounds. Does this indicate that the population proportion of guests who catch pike over 20 pounds is different from 75% (either higher or lower)? Use α = 0.05. (a) What is the level of significance? State the null and...
For one binomial experiment, n1 = 75 binomial trials produced r1 = 30 successes. For a...
For one binomial experiment, n1 = 75 binomial trials produced r1 = 30 successes. For a second independent binomial experiment, n2 = 100 binomial trials produced r2 = 50 successes. At the 5% level of significance, test the claim that the probabilities of success for the two binomial experiments differ. (a) Compute the pooled probability of success for the two experiments. (Round your answer to three decimal places.) (b) Check Requirements: What distribution does the sample test statistic follow? Explain....
For one binomial experiment, n1 = 75 binomial trials produced r1 = 45 successes. For a...
For one binomial experiment, n1 = 75 binomial trials produced r1 = 45 successes. For a second independent binomial experiment, n2 = 100 binomial trials produced r2 = 65 successes. At the 5% level of significance, test the claim that the probabilities of success for the two binomial experiments differ.(a) Compute the pooled probability of success for the two experiments. (Round your answer to three decimal places.) (b) Check Requirements: What distribution does the sample test statistic follow? Explain. The...
Women athletes at the a certain university have a long-term graduation rate of 67%. Over the...
Women athletes at the a certain university have a long-term graduation rate of 67%. Over the past several years, a random sample of 39 women athletes at the school showed that 22 eventually graduated. Does this indicate that the population proportion of women athletes who graduate from the university is now less than 67%? Use a 5% level of significance. (a) What is the level of significance? State the null and alternate hypotheses. H0: p = 0.67; H1: p <...
The Congressional Budget Office reports that 36% of federal civilian employees have a bachelor's degree or...
The Congressional Budget Office reports that 36% of federal civilian employees have a bachelor's degree or higher (The Wall Street Journal). A random sample of 123 employees in the private sector showed that 32have a bachelor's degree or higher. Does this indicate that the percentage of employees holding bachelor's degrees or higher in the private sector is less than in the federal civilian sector? Use α = 0.05. a. What are we testing in this problem? single mean single proportion     ...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT