A multinational company invests a certain amount of dollars in a project. The following table lists all the possible future returns ($, in millions) associated with the respective probabilities.
Let X represent the returns ($, in millions) in this random process. Calculate the population variance σ 2 of X ($, in squared millions). (keep two decimals).
Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | Scenario 5 | Scenario 6 | Scenario 7 | |
Possible returns, Xi |
14.33 |
-8.98 |
14.77 |
-12.18 |
10.27 |
-8.95 |
-9.39 |
Probability, pi |
15.25% |
7.50% |
13.55% |
16.75% |
10.50% |
18.05% |
18.40% |
Group of answer choices
72.81
229.27
433.97
132.90
Solution :
x | P(x) | x * P(x) | x2 * P(x) |
14.33 | 0.1525 | 2.185325 | 31.31571 |
-8.98 | 0.075 | -0.6735 | 6.04803 |
14.77 | 0.1355 | 2.001335 | 29.55972 |
-12.18 | 0.1675 | -2.04015 | 24.84903 |
10.27 | 0.105 | 1.07835 | 11.07465 |
-8.95 | 0.1805 | -1.61548 | 14.4585 |
-9.39 | 0.184 | -1.72776 | 16.22367 |
Sum | 1 | -0.79188 | 133.5293 |
Variance = 2
= X 2 * P(X) - 2
= 133.5293 - (-0.79188)2
= 132.90
Get Answers For Free
Most questions answered within 1 hours.