Question

A linear regression of a variable Y against the explanatory variables X1 and X2 produced the...

A linear regression of a variable Y against the explanatory variables X1 and X2 produced the following estimation model:

Y = 1615.495 + 9.957 X1 + 0.081 X2 + e

(527.96) (6.32) (0.024)

The number in parentheses are the standard errors of each coefficients

i. State the null and alternative hypothesis for the coefficients

Select the appropriate test, compute the test statistic based on the information above, and test the null hypothesis for each coefficient by using a level of significance equal to 5%

ii. Which parameters are statistically significant? Rewrite the model again by using only the coefficients, which are statistically significant

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider a regression of y on two explanatory variables, x1 and x2, which are potentially correlated...
Consider a regression of y on two explanatory variables, x1 and x2, which are potentially correlated (though not perfectly). Say that x1 can take on any value between 1 and 100. A researcher draws a random sample of observations, with information on y, x1 and x2. She runs a regression on this sample, which we refer to as regression A. She then takes the subset of the data where x1 is restricted to only take values between 1 and 50,...
1.Consider a regression of y on two explanatory variables, x1 and x2, which are potentially correlated...
1.Consider a regression of y on two explanatory variables, x1 and x2, which are potentially correlated (though not perfectly). Say that x1 can take on any value between 1 and 100. A researcher draws a random sample of observations, with information on y, x1 and x2. She runs a regression on this sample, which we refer to as regression A. She then takes the subset of the data where x1 is restricted to only take values between 1 and 50,...
6.    Consider the following sample regression results:             Y hat = 15.4 +    2.20 X1   +...
6.    Consider the following sample regression results:             Y hat = 15.4 +    2.20 X1   + 48.14 X2                 R2 = .355                      (6.14)     (.42)          (5.21)            n = 27 The numbers in the parentheses are the estimated standard errors of the sample regression coefficients. 6. (continued) a.    Construct a 95% confidence interval for b1. b.    Is there evidence of a linear relationship between X2   and Y at the 5% level of significance? c.    If you were to use a global test...
Consider a regression of y on x1, x2 and x3. You are told that x1 and...
Consider a regression of y on x1, x2 and x3. You are told that x1 and x3 are positively correlated but x2 is uncorrelated with the other two variables. [3] What, if anything, can you say about the relative magnitudes of the estimated coefficients on each of the three explanatory variables? [6] What, if anything, can you say about the precision with which we can estimate these coefficients?
Use the following linear regression equation to answer the questions. x1 = 1.1 + 3.0x2 –...
Use the following linear regression equation to answer the questions. x1 = 1.1 + 3.0x2 – 8.4x3 + 2.3x4 (a) Which variable is the response variable? x3 x1      x2 x4 Which variables are the explanatory variables? (Select all that apply.) x1 x2 x3 x4 (b) Which number is the constant term? List the coefficients with their corresponding explanatory variables. constant = x2 coefficient= x3 coefficient= x4 coefficient= (c) If x2 = 4, x3 = 10, and x4 = 6, what...
Assume one of the explanatory variable (named X1) in your logistic regression is a categorical variable...
Assume one of the explanatory variable (named X1) in your logistic regression is a categorical variable with the following levels: low, average and high, and another explanatory variable (named X2) is also categorical with the following levels: Sydney, Melbourne, Hobart and Brisbane. Explain how you will use them in developing your logistic regression model. How many coefficients you will have in your final model?
Assume one of the explanatory variable (named X1) in your logistic regression is a categorical variable...
Assume one of the explanatory variable (named X1) in your logistic regression is a categorical variable with the following levels: low, average and high, and another explanatory variable (named X2) is also categorical with the following levels: Sydney, Melbourne, Hobart and Brisbane. Explain how you will use them in developing your logistic regression model. How many coefficients you will have in your final model?
Use the following linear regression equation to answer the questions. x1 = 1.5 + 3.5x2 –...
Use the following linear regression equation to answer the questions. x1 = 1.5 + 3.5x2 – 8.2x3 + 2.1x4 (a) Which variable is the response variable? A. x3 B. x1     C. x2 D. x4 (b) Which variables are the explanatory variables? (Select all that apply.) A. x4 B. x1 C. x3 D. x2 (c) Which number is the constant term? List the coefficients with their corresponding explanatory variables. constant ____________ x2 coefficient_________ x3 coefficient_________ x4 coefficient_________ (d) If x2 =...
(By Hand) For the dependent variable Y and the independent variables X1 and X2, the linear...
(By Hand) For the dependent variable Y and the independent variables X1 and X2, the linear regression model is given by: Y=0.08059*X1-0.16109*X2+5.26570. Complete the following table: Actual Y X1 X2 Predicted Y Prediction Error 6 6.8 4.7 3.1 5.3 5.5 5.8 4.5 6.2 4.5 8.8 7 4.5 6.8 6.1 3.7 8.5 5.1 5.4 8.9 4.8 5.1 6.9 5.4 5.8 9.3 5.9 5.7 8.4 5.4
Question 1 Suppose you estimate the following regression function where Y, X1, and X2 are continuous...
Question 1 Suppose you estimate the following regression function where Y, X1, and X2 are continuous variables measured in integers: Yhat=0.5+0.25*X1 −0.01*X2−0.43*X
3 Suppose that X2=X1*X1 The standard error of beta0hat is 0.10. The standard error of beta1hat is 0.05. The standard error of beta2hat is 0.005. The standard error of beta3hat is 0.05. What is the marginal effect of X1 when it increases from 3 to 4? Round to two decimal places. 10 points Question 2 Refer to question...