Question

#8 An article used an estimated regression equation to describe the relationship between y = error...

#8

An article used an estimated regression equation to describe the relationship between y = error percentage for subjects reading a four-digit liquid crystal display and the independent variables

x1 = level of backlight, x2 = character subtense, x3 = viewing angle, and x4 = level of ambient light. From a table given in the article, SSRegr = 23.1, SSResid = 24, and n = 30.

Calculate the test statistic. (Round your answer to two decimal places.)

F =

Calculate r2

for this model. (Round your answer to three decimal places.)

r2 =

Calculate se

for this model. (Round your answer to three decimal places.)

se =

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In a regression analysis involving 30 observations, the following estimated regression equation was obtained. ŷ =...
In a regression analysis involving 30 observations, the following estimated regression equation was obtained. ŷ = 17.6 + 3.8x1 − 2.3x2 + 7.6x3 + 2.7x4 For this estimated regression equation, SST = 1,835 and SSR = 1,800. (a)At α = 0.05, test the significance of the relationship among the variables.State the null and alternative hypotheses. -H0: One or more of the parameters is not equal to zero. Ha: β0 = β1 = β2 = β3 = β4 = 0 -H0:...
In a regression analysis involving 30 observations, the following estimated regression equation was obtained. ŷ =...
In a regression analysis involving 30 observations, the following estimated regression equation was obtained. ŷ = 17.6 + 3.8x1 − 2.3x2 + 7.6x3 + 2.7x4 For this estimated regression equation, SST = 1,805 and SSR = 1,770 a. Find the value of the test statistic. (Round your answer to two decimal places.) _________ b. Suppose variables x1 and x4 are dropped from the model and the following estimated regression equation is obtained. ŷ = 11.1 − 3.6x2 + 8.1x3 Compute...
In a regression analysis involving 30 observations, the following estimated regression equation was obtained. ŷ =...
In a regression analysis involving 30 observations, the following estimated regression equation was obtained. ŷ = 17.6 + 3.8x1 − 2.3x2 + 7.6x3 + 2.7x4 For this estimated regression equation, SST = 1,815 and SSR = 1,780. (a) At α = 0.05, test the significance of the relationship among the variables. State the null and alternative hypotheses. H0: β0 = β1 = β2 = β3 = β4 = 0 Ha: One or more of the parameters is not equal to...
19) Use the following linear regression equation to answer the questions. x3 = −18.7 + 4.3x1...
19) Use the following linear regression equation to answer the questions. x3 = −18.7 + 4.3x1 + 8.6x4 − 1.0x7 (b) Which number is the constant term? List the coefficients with their corresponding explanatory variables. constant x1 coefficient      x4 coefficient x7 coefficient (c) If x1 = 5, x4 = -6, and x7 = 4, what is the predicted value for x3? (Round your answer to one decimal place.) x3 = (d) Suppose x1 and x7 were held at fixed...
In a regression analysis involving 27 observations, the following estimated regression equation was developed. ŷ =...
In a regression analysis involving 27 observations, the following estimated regression equation was developed. ŷ = 25.2 + 5.5x1 For this estimated regression equation SST = 1,550 and SSE = 530. (a) At α = 0.05, test whether x1  is significant.State the null and alternative hypotheses. H0: β1 ≠ 0 Ha: β1 = 0 H0: β0 ≠ 0 Ha: β0 = 0    H0: β0 = 0 Ha: β0 ≠ 0 H0: β1 = 0 Ha: β1 ≠ 0 Find the value...
In a regression analysis involving 27 observations, the following estimated regression equation was developed. ŷ =...
In a regression analysis involving 27 observations, the following estimated regression equation was developed. ŷ = 25.2 + 5.5x1 For this estimated regression equation SST = 1,600 and SSE = 550. (a) At α = 0.05, test whether x1is significant.State the null and alternative hypotheses. H0: β0 = 0 Ha: β0 ≠ 0 H0: β0 ≠ 0 Ha: β0 = 0    H0: β1 ≠ 0 Ha: β1 = 0 H0: β1 = 0 Ha: β1 ≠ 0 Find the value...
In a regression analysis involving 27 observations, the following estimated regression equation was developed. ŷ =...
In a regression analysis involving 27 observations, the following estimated regression equation was developed. ŷ = 25.2 + 5.5x1 For this estimated regression equation SST = 1,600 and SSE = 550. (a) At α = 0.05, test whether x1 is significant. State the null and alternative hypotheses. H0: β0 = 0 Ha: β0 ≠ 0H0: β0 ≠ 0 Ha: β0 = 0    H0: β1 ≠ 0 Ha: β1 = 0H0: β1 = 0 Ha: β1 ≠ 0 Find the value of...
You may need to use the appropriate technology to answer this question. In a regression analysis...
You may need to use the appropriate technology to answer this question. In a regression analysis involving 30 observations, the following estimated regression equation was obtained. ŷ = 17.6 + 3.8x1 − 2.3x2 + 7.6x3 + 2.7x4 For this estimated regression equation, SST = 1,835 and SSR = 1,790. (a) At α = 0.05, test the significance of the relationship among the variables. State the null and alternative hypotheses. H0: One or more of the parameters is not equal to...
A regression model to predict Y, the state burglary rate per 100,000 people for 2005, used...
A regression model to predict Y, the state burglary rate per 100,000 people for 2005, used the following four state predictors: X1 = median age in 2005, X2 = number of 2005 bankruptcies, X3 = 2004 federal expenditures per capita (a leading predictor), and X4 = 2005 high school graduation percentage. (a) Fill in the values in the table given here for a two-tailed test at α = 0.01 with 40 d.f. (Negative values should be indicated by a minus...
Use the following linear regression equation to answer the questions. x3 = ?16.6 + 3.7x1 +...
Use the following linear regression equation to answer the questions. x3 = ?16.6 + 3.7x1 + 8.6x4 ? 1.9x7 If x4 decreased by 2 units, what would we expect for the corresponding change in x3? (e) Suppose that n = 20 data points were used to construct the given regression equation and that the standard error for the coefficient of x4 is 0.924. Construct a 90% confidence interval for the coefficient of x4. (Round your answers to two decimal places.)...