Question

Hypothesis Test for the Difference in Population Means (σσ  Unknown) You wish to test the following claim...

Hypothesis Test for the Difference in Population Means (σσ  Unknown)

You wish to test the following claim (HaHa) at a significance level of α=0.005α=0.005.

      Ho:μ1=μ2Ho:μ1=μ2
      Ha:μ1>μ2Ha:μ1>μ2

You believe both populations are normally distributed, but you do not know the standard deviations for either. Let's assume that the variances of the two populations are not equal. You obtain the following two samples of data.

Sample #1

60 62.8 60.2
48.5 61.8 52.7
65.1 66.3 71.4
72.2 63.8 59.5
70.5 58.3 79.6
57.4

Sample #2

76.7 75.2 71.3
38.7 75.2 86.9
57.3 47.7 25.9
74.4 52.6


What is the test statistic for this sample? (Keep sample statistics rounded to 3 decimal places. Report answer accurate to three decimal places.)
test statistic =

What is the p-value for this sample? For this calculation, use the degrees of freedom reported from the technology you are using. (Report answer accurate to four decimal places.)
p-value =

The p-value is...

  • less than (or equal to) αα
  • greater than αα



This test statistic leads to a decision to...

  • reject the null
  • accept the null
  • fail to reject the null



As such, the final conclusion is that...

  • There is sufficient evidence to warrant rejection of the claim that the first population mean is greater than the second population mean.
  • There is not sufficient evidence to warrant rejection of the claim that the first population mean is greater than the second population mean.
  • The sample data support the claim that the first population mean is greater than the second population mean.
  • There is not sufficient sample evidence to support the claim that the first population mean is greater than the second population mean.

License

Homework Answers

Answer #1

The statistical software output for this problem is :

Test statistics = 0.189

P-value = 0.4265

The p-value is greater than α .

fail to reject the null .

There is not sufficient sample evidence to support the claim that the first population

mean is greater than the second population mean.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
You wish to test the claim that the first population mean is greater than the second...
You wish to test the claim that the first population mean is greater than the second population mean at a significance level of α=0.05α=0.05.      Ho:μ1=μ2Ho:μ1=μ2 Ha:μ1>μ2Ha:μ1>μ2 You obtain the following two samples of data. Sample #1 Sample #2 74.3 68.4 88.5 64.0 102.8 65.5 77.5 97.4 44.0 60.0 75.0 78.6 81.3 70.8 54.5 74.3 85.0 71.4 71.4 57.7 40.8 64.4 What is the test statistic for this sample? test statistic =____ Round to 3 decimal places. What is the...
You wish to test the following claim (H1H1) at a significance level of α=0.005α=0.005.       Ho:μ1=μ2Ho:μ1=μ2       H1:μ1>μ2H1:μ1>μ2...
You wish to test the following claim (H1H1) at a significance level of α=0.005α=0.005.       Ho:μ1=μ2Ho:μ1=μ2       H1:μ1>μ2H1:μ1>μ2 You believe both populations are normally distributed, but you do not know the standard deviations for either. However, you also have no reason to believe the variances of the two populations are not equal. You obtain the following two samples of data. Sample #1 Sample #2 72.7 81 78.1 97.9 82.4 79.9 85.8 79.6 103.6 65.1 69.1 57.2 60.5 64.6 75.2 113.9 67.1 97.2...
You wish to test the claim that the first population mean is less than the second...
You wish to test the claim that the first population mean is less than the second population mean at a significance level of α=0.002α=0.002.      Ho:μ1=μ2Ho:μ1=μ2 Ha:μ1<μ2Ha:μ1<μ2 You obtain the following two samples of data. Sample #1 Sample #2 69.4 46.4 38.8 62.3 53.2 55.4 55.8 53.6 33.7 36.6 54.3 89.6 53.6 59.5 55.8 68.0 65.0 64.9 57.1 74.0 63.1 64.7 74.7 65.0 72.4 74.7 What is the test statistic for this sample? test statistic =   Round to 4 decimal places....
You wish to test the following claim (HaHa) at a significance level of α=0.001α=0.001. Ho:μ1=μ2Ho:μ1=μ2 Ha:μ1>μ2Ha:μ1>μ2...
You wish to test the following claim (HaHa) at a significance level of α=0.001α=0.001. Ho:μ1=μ2Ho:μ1=μ2 Ha:μ1>μ2Ha:μ1>μ2 You believe both populations are normally distributed, but you do not know the standard deviations for either. And you have no reason to believe the variances of the two populations are equal You obtain a sample of size n1=27n1=27 with a mean of ¯x1=86.9x¯1=86.9 and a standard deviation of s1=11.7s1=11.7 from the first population. You obtain a sample of size n2=14n2=14 with a mean...
You wish to test the following claim (HaHa) at a significance level of α=0.01α=0.01. Ho:μ1=μ2Ho:μ1=μ2 Ha:μ1>μ2Ha:μ1>μ2...
You wish to test the following claim (HaHa) at a significance level of α=0.01α=0.01. Ho:μ1=μ2Ho:μ1=μ2 Ha:μ1>μ2Ha:μ1>μ2 You believe both populations are normally distributed, but you do not know the standard deviations for either. And you have no reason to believe the variances of the two populations are equal You obtain a sample of size n1=26n1=26 with a mean of ¯x1=74.8x¯1=74.8 and a standard deviation of s1=8.3s1=8.3 from the first population. You obtain a sample of size n2=13n2=13 with a mean...
You wish to test the following claim (H1H1) at a significance level of α=0.001α=0.001.       Ho:μ1=μ2Ho:μ1=μ2       H1:μ1>μ2H1:μ1>μ2...
You wish to test the following claim (H1H1) at a significance level of α=0.001α=0.001.       Ho:μ1=μ2Ho:μ1=μ2       H1:μ1>μ2H1:μ1>μ2 You believe both populations are normally distributed, but you do not know the standard deviations for either. However, you also have no reason to believe the variances of the two populations are not equal. You obtain a sample of size n1=24n1=24 with a mean of M1=68.9M1=68.9 and a standard deviation of SD1=8.6SD1=8.6 from the first population. You obtain a sample of size n2=24n2=24 with...
Hypothesis Test for the Difference in Two Proportions You wish to test the following claim (HaHa)...
Hypothesis Test for the Difference in Two Proportions You wish to test the following claim (HaHa) at a significance level of α=0.02α=0.02.       Ho:p1=p2Ho:p1=p2       Ha:p1>p2Ha:p1>p2 You obtain 78.6% successes in a sample of size n1=746n1=746 from the first population. You obtain 70.5% successes in a sample of size n2=509n2=509 from the second population. What is the test statistic for this sample? (Report answer accurate to three decimal places.) test statistic = What is the p-value for this sample? (Report answer accurate...
You wish to test the following claim (HaHa) at a significance level of α=0.05α=0.05. Ho:μ1=μ2Ho:μ1=μ2 Ha:μ1≠μ2Ha:μ1≠μ2...
You wish to test the following claim (HaHa) at a significance level of α=0.05α=0.05. Ho:μ1=μ2Ho:μ1=μ2 Ha:μ1≠μ2Ha:μ1≠μ2 You believe both populations are normally distributed, but you do not know the standard deviations for either. And you have no reason to believe the variances of the two populations are equal You obtain a sample of size n1=16n1=16 with a mean of ¯x1=62.4x¯1=62.4 and a standard deviation of s1=15.3s1=15.3 from the first population. You obtain a sample of size n2=25n2=25 with a mean...
Hypothesis Test for a Population Mean (σσ is Unknown) You wish to test the following claim...
Hypothesis Test for a Population Mean (σσ is Unknown) You wish to test the following claim (HaHa) at a significance level of α=0.10α=0.10.       Ho:μ=77.2Ho:μ=77.2       Ha:μ≠77.2Ha:μ≠77.2 You believe the population is normally distributed, but you do not know the standard deviation. You obtain a sample of size n=83n=83 with mean M=78.9M=78.9 and a standard deviation of SD=13.7SD=13.7. What is the test statistic for this sample? (Report answer accurate to three decimal places.) test statistic = What is the p-value for this...
You wish to test the following claim (HaHa) at a significance level of α=0.002α=0.002.       Ho:μ1=μ2Ho:μ1=μ2       Ha:μ1≠μ2Ha:μ1≠μ2...
You wish to test the following claim (HaHa) at a significance level of α=0.002α=0.002.       Ho:μ1=μ2Ho:μ1=μ2       Ha:μ1≠μ2Ha:μ1≠μ2 You believe both populations are normally distributed, but you do not know the standard deviations for either. However, you also have no reason to believe the variances of the two populations are not equal. You obtain the following two samples of data. Sample #1 Sample #2 60 68.9 65.3 84.7 56.9 65.8 77.6 72.4 69.2 58.9 70 68.9 71.3 78 87.1 60.7 61.3 77.2...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT