Question

Consider a Markov chain on {0,1,2, ...} such that from state i, the chain goes to...

Consider a Markov chain on {0,1,2, ...} such that from state i, the chain goes to i + 1 with probability p, 0 <p <1, and goes to state 0 with probability 1 - p. 
a) Show that this string is irreducible. b) Calculate P0 (T0 = n), n ≥ 1. c) Show that the chain is recurring.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider a Markov chain {Xn; n = 0, 1, 2, . . . } on S...
Consider a Markov chain {Xn; n = 0, 1, 2, . . . } on S = N = {0, 1, 2, . . . } with transition probabilities P(x, 0) = 1/2 , P(x, x + 1) = 1/2 ∀x ∈ S, . (a) Show that the chain is irreducible. (b) Find P0(T0 = n) for each n = 1, 2, . . . . (c) Use part (b) to show that state 0 is recurrent; i.e., ρ00 =...
Let {??,?=0,1,2,…} be a Markov chain with the state space ?={0,1,2,3,…}. The transition probabilities are defined...
Let {??,?=0,1,2,…} be a Markov chain with the state space ?={0,1,2,3,…}. The transition probabilities are defined as follows: ?0,0=1, ??,?+1=? and ??,?−1=1−?, for ?≥1. In addition, suppose that 12<?<1. For an arbitrary state d such that ?∈?,?≠0, compute ?(??>0 ??? ??? ?≥1 |?0=?).
asasap Consider the Markov chain with state space {1, 2, 3} and transition matrix  ...
asasap Consider the Markov chain with state space {1, 2, 3} and transition matrix   1 2 1 4 1 4 0 1 0 1 4 0 3 4   Find the periodicity of the states. \ Let {Xn|n ≥ 0} be a finite state Markov chain. prove or disprove that all states are positive recurren
1. Consider the Markov chain {Xn|n ≥ 0} associated with Gambler’s ruin with m = 3....
1. Consider the Markov chain {Xn|n ≥ 0} associated with Gambler’s ruin with m = 3. Find the probability of ruin given X0 = i ∈ {0, 1, 2, 3} 2 Let {Xn|n ≥ 0} be a simple random walk on an undirected graph (V, E) where V = {1, 2, 3, 4, 5, 6, 7} and E = {{1, 2}, {1, 3}, {1, 6}, {2, 4}, {4, 6}, {3, 5}, {5, 7}}. Let X0 ∼ µ0 where µ0({i}) =...
The state of a process changes daily according to a two-state Markov chain. If the process...
The state of a process changes daily according to a two-state Markov chain. If the process is in state i during one day, then it is in state j the following day with probability Pi, j , where P0,0 = 0.3, P0,1 = 0.7, P1,0 = 0.2, P1,1 = 0.8 Every day a message is sent. If the state of the Markov chain that day is i then the message sent is “good” with probability pi and is “bad” with...
Consider a Markov chain with state space {1,2,3} and transition matrix. P= .4 .2 .4 .6...
Consider a Markov chain with state space {1,2,3} and transition matrix. P= .4 .2 .4 .6 0 .4 .2 .5 .3 What is the probability in the long run that the chain is in state 1? Solve this problem two different ways: 1) by raising the matrix to a higher power; and 2) by directly computing the invariant probability vector as a left eigenvector.
Xn is a Markov Chain with state-space E = {0, 1, 2}, and transition matrix 0.4...
Xn is a Markov Chain with state-space E = {0, 1, 2}, and transition matrix 0.4 0.2     ? P = 0.6 0.3    ? 0.5 0.3    ? And initial probability vector a = [0.2, 0.3, ?] a) What are the missing values (?) in the transition matrix an initial vector? b) P(X1 = 0) = c) P(X1 = 0|X0 = 2) = d) P(X22 = 1|X20 = 2) = e) E[X0] = For the Markov Chain with state-space, initial vector, and...
Consider the Markov chain with the state space {1,2,3} and transition matrix P= .2 .4 .4...
Consider the Markov chain with the state space {1,2,3} and transition matrix P= .2 .4 .4 .1 .5 .4 .6 .3 .1 What is the probability in the long run that the chain is in state 1? Solve this problem two different ways: 1) by raising the matrix to a higher power; and 2) by directly computing the invariant probability vector as a left eigenvector.
urgent Consider the Markov chain with state space {0, 1, 2, 3, 4} and transition probability...
urgent Consider the Markov chain with state space {0, 1, 2, 3, 4} and transition probability matrix (pij ) given   2 3 1 3 0 0 0 1 3 2 3 0 0 0 0 1 4 1 4 1 4 1 4 0 0 1 2 1 2 0 0 0 0 0 1   Find all the closed communicating classes Consider the Markov chain with state space {1, 2, 3} and transition matrix  ...
I am having problems with a probability/stochastic process question regarding discrete markov chains. I get the...
I am having problems with a probability/stochastic process question regarding discrete markov chains. I get the intuition behind the questions, but I am unsure on how to prove them. P is a finite transition matrix. Question: Let P have a finite state space of size N + 1. Suppose that P is irreducible. Let «i» and «j » be a fixed and different states. Prove that Pij(n) > 0 for some n ≤ N. Prove that Pii(n) > 0 for...