Question

Based on information from the Federal Highway Administration web site, the average annual miles driven per...

Based on information from the Federal Highway Administration web site, the average annual miles driven per vehicle in the United States is 13.5 thousand miles. Assume σ ≈ 650 miles. Suppose that a random sample of 36 vehicles owned by residents of Chicago showed that the average mileage driven last year was 13.2 thousand miles. Would this indicate that the average miles driven per vehicle in Chicago is different from (higher or lower than) the national average? Use a 0.05 level of significance. What are we testing in this problem? single proportion single mean (a) What is the level of significance? State the null and alternate hypotheses. (b) What sampling distribution will you use? What assumptions are you making? What is the value of the sample test statistic? (Round your answer to two decimal places.) (c) Find (or estimate) the P-value. Sketch the sampling distribution and show the area corresponding to the P-value. (d) Based on your answers in parts (a) to (c), will you reject or fail to reject the null hypothesis? Are the data statistically significant at level α? At the α = 0.05 level, we reject the null hypothesis and conclude the data are statistically significant. At the α = 0.05 level, we reject the null hypothesis and conclude the data are not statistically significant. At the α = 0.05 level, we fail to reject the null hypothesis and conclude the data are statistically significant. At the α = 0.05 level, we fail to reject the null hypothesis and conclude the data are not statistically significant. (e) Interpret your conclusion in the context of the application. There is sufficient evidence at the 0.05 level to conclude that the miles driven per vehicle in the city differs from the national average. There is insufficient evidence at the 0.05 level to conclude that the miles driven per vehicle in the city differs from the national average.

Homework Answers

Answer #1

a)

level of significance =0.05

null hypothesis:Ho μ = 13.5
Alternate Hypothesis:Ha μ 13.5

b)

sampling distribution :standard normal

value of the sample test statistic z=-2.77

p value =0.0056

(on both tails)

d) At the α = 0.05 level, we reject the null hypothesis and conclude the data are statistically significant

There is sufficient evidence at the 0.05 level to conclude that the miles driven per vehicle in the city differs from the national average.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The U.S. Department of Transportation, National Highway Traffic Safety Administration, reported that 77% of all fatally...
The U.S. Department of Transportation, National Highway Traffic Safety Administration, reported that 77% of all fatally injured automobile drivers were intoxicated. A random sample of 53 records of automobile driver fatalities in a certain county showed that 35 involved an intoxicated driver. Do these data indicate that the population proportion of driver fatalities related to alcohol is less than 77% in Kit Carson County? Use α = 0.05. a) What is the level of significance? State the null and alternate...
1.Based on information in Statistical Abstract of the United States (116th edition), the average annual miles...
1.Based on information in Statistical Abstract of the United States (116th edition), the average annual miles driven per vehicle in the United States is 11.1 thousand miles, with sigma of 600 miles. Suppose that a random sample of 36 vehicles owned by residents of Chicago showed that the average mileage driven last year was 10.8 thousand miles. Does this indicate that the average miles driven per vehicle in Chicago is different from (higher or lower than) the national average? Use...
The U.S. Department of Transportation, National Highway Traffic Safety Administration, reported that 77% of all fatally...
The U.S. Department of Transportation, National Highway Traffic Safety Administration, reported that 77% of all fatally injured automobile drivers were intoxicated. A random sample of 53 records of automobile driver fatalities in a certain county showed that 33 involved an intoxicated driver. Do these data indicate that the population proportion of driver fatalities related to alcohol is less than 77% in Kit Carson County? Use α = 0.01. (a) What is the level of significance? State the null and alternate...
The U.S. Department of Transportation, National Highway Traffic Safety Administration, reported that 77% of all fatally...
The U.S. Department of Transportation, National Highway Traffic Safety Administration, reported that 77% of all fatally injured automobile drivers were intoxicated. A random sample of 52 records of automobile driver fatalities in a certain county showed that 34 involved an intoxicated driver. Do these data indicate that the population proportion of driver fatalities related to alcohol is less than 77% in Kit Carson County? Use α = 0.10. (a) What is the level of significance? Answer: 0.10 State the null...
D5: According to the US Federal Highway Administration, the mean number of miles driven annually is...
D5: According to the US Federal Highway Administration, the mean number of miles driven annually is 12,200. A state official claims that residents of her state drive more than the national average. A simple random sample of 37 drivers from this state are selected. The mean number of miles driven for this sample of 37 drivers is 12,861.7 and the sample standard deviation was 2,200 miles. Is this a hypothesis test for a mean or a proportion? How do you...
The Congressional Budget Office reports that 36% of federal civilian employees have a bachelor's degree or...
The Congressional Budget Office reports that 36% of federal civilian employees have a bachelor's degree or higher (The Wall Street Journal). A random sample of 123 employees in the private sector showed that 32have a bachelor's degree or higher. Does this indicate that the percentage of employees holding bachelor's degrees or higher in the private sector is less than in the federal civilian sector? Use α = 0.05. a. What are we testing in this problem? single mean single proportion     ...
The Congressional Budget Office reports that 36% of federal civilian employees have a bachelor's degree or...
The Congressional Budget Office reports that 36% of federal civilian employees have a bachelor's degree or higher (The Wall Street Journal). A random sample of 115 employees in the private sector showed that 32 have a bachelor's degree or higher. Does this indicate that the percentage of employees holding bachelor's degrees or higher in the private sector is less than in the federal civilian sector? Use α = 0.05. a.) What are we testing in this problem? -single proportion -single...
The Congressional Budget Office reports that 36% of federal civilian employees have a bachelor's degree or...
The Congressional Budget Office reports that 36% of federal civilian employees have a bachelor's degree or higher (The Wall Street Journal). A random sample of 117 employees in the private sector showed that 30 have a bachelor's degree or higher. Does this indicate that the percentage of employees holding bachelor's degrees or higher in the private sector is less than in the federal civilian sector? Use α = 0.05. What are we testing in this problem? single meansingle proportion     What...
What is your favorite color? A large survey of countries, including the United States, China, Russia,...
What is your favorite color? A large survey of countries, including the United States, China, Russia, France, Turkey, Kenya, and others, indicated that most people prefer the color blue. In fact, about 24% of the population claim blue as their favorite color.† Suppose a random sample of n = 59 college students were surveyed and r = 11 of them said that blue is their favorite color. Does this information imply that the color preference of all college students is...
A random sample of 50 binomial trials resulted in 20 successes. Test the claim that the...
A random sample of 50 binomial trials resulted in 20 successes. Test the claim that the population proportion of successes does not equal 0.50. Use a level of significance of 0.05. (e) Do you reject or fail to reject H0? Explain. At the α = 0.05 level, we reject the null hypothesis and conclude the data are statistically significant.At the α = 0.05 level, we reject the null hypothesis and conclude the data are not statistically significant.    At the α =...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT