Question

1)A population of values has a normal distribution with μ=74.3μ=74.3 and σ=37.4σ=37.4. You intend to draw...

1)A population of values has a normal distribution with μ=74.3μ=74.3 and σ=37.4σ=37.4. You intend to draw a random sample of size n=137n=137.

Find the probability that a single randomly selected value is less than 72.1.
P(X < 72.1) =

Find the probability that a sample of size n=137n=137 is randomly selected with a mean less than 72.1.
P(¯xx¯ < 72.1) = (Enter your answers as numbers accurate to 4 decimal places.)

2)CNNBC recently reported that the mean annual cost of auto insurance is 972 dollars. Assume the standard deviation is 229 dollars. You take a simple random sample of 94 auto insurance policies.

Find the probability that a single randomly selected value is less than 996 dollars.
P(X < 996) =

Find the probability that a sample of size n=94n=94 is randomly selected with a mean less than 996 dollars.
P(¯xx¯ < 996) = (Enter your answers as numbers accurate to 4 decimal places.)

3)Suppose the true proportion of voters in the county who support a new fire district is 0.49. Consider the sampling distribution for the proportion of supporters with sample size n = 177.

What is the mean of this distribution?  (Enter your answer accurate to two decimal places.)

What is the standard deviation of the sampling distribution (i.e. the standard error)?     (Enter your answer accurate to three decimal places.)

4)Suppose that the efficacy of a certain drug is 0.51. Consider the sampling distribution (sample size n = 192) for the proportion of patients cured by this drug.

What is the mean of this distribution?  (Enter your answer as a number accurate to 2 decimal places.)

What is the standard deviation of this sampling distribution (i.e., the standard error)?     (Enter your answer as a number accurate to 3 decimal places.)

5)Data from the U.S. Department of Education indicates that 35% of business graduate students from private universities had student loans. Suppose you randomly survey a sample of graduate business students from private universities. Consider the sampling distribution (sample size n = 214) for the proportion of these students who have loans.

What is the mean of this distribution?  (Enter your answer accurate to two decimal places.)

What is the standard deviation of this sampling distribution (i.e., the standard error)?     (Enter your answer accurate to three decimal places.)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A population of values has a normal distribution with μ=50 and σ=98.2. You intend to draw...
A population of values has a normal distribution with μ=50 and σ=98.2. You intend to draw a random sample of size n=13. Find the probability that a single randomly selected value is less than -1.7. P(X < -1.7) = Find the probability that a sample of size n=13 is randomly selected with a mean less than -1.7. P(M < -1.7) = Enter your answers as numbers accurate to 4 decimal places. Answers obtained using exact z-scores or z-scores rounded to...
A population of values has a normal distribution with μ=199.9μ=199.9 and σ=45.2σ=45.2. You intend to draw...
A population of values has a normal distribution with μ=199.9μ=199.9 and σ=45.2σ=45.2. You intend to draw a random sample of size n=111n=111. Find the probability that a single randomly selected value is greater than 200.3. P(X > 200.3) = Find the probability that a sample of size n=111n=111 is randomly selected with a mean greater than 200.3. P(¯xx¯ > 200.3) =  Enter your answers as numbers accurate to 4 decimal places.
A population of values has a normal distribution with μ=207.5μ=207.5 and σ=35.2σ=35.2. You intend to draw...
A population of values has a normal distribution with μ=207.5μ=207.5 and σ=35.2σ=35.2. You intend to draw a random sample of size n=250n=250. Find the probability that a single randomly selected value is between 202.8 and 213.1. P(202.8 < X < 213.1) = Find the probability that a sample of size n=250n=250 is randomly selected with a mean between 202.8 and 213.1. P(202.8 < ¯xx¯ < 213.1) = Enter your answers as numbers accurate to 4 decimal places. Answers should be...
A population of values has a normal distribution with μ=69.7μ=69.7 and σ=60.5σ=60.5. You intend to draw...
A population of values has a normal distribution with μ=69.7μ=69.7 and σ=60.5σ=60.5. You intend to draw a random sample of size n=220n=220. Please show your answers as numbers accurate to 4 decimal places. Find the probability that a single randomly selected value is between 74.6 and 80.7. P(74.6 < X < 80.7) = Find the probability that a sample of size n=220n=220 is randomly selected with a mean between 74.6 and 80.7. P(74.6 < ¯xx¯ < 80.7) =
A population of values has a normal distribution with μ=89.5μ=89.5 and σ=22.5σ=22.5. You intend to draw...
A population of values has a normal distribution with μ=89.5μ=89.5 and σ=22.5σ=22.5. You intend to draw a random sample of size n=210n=210. Please show your answers as numbers accurate to 4 decimal places. Find the probability that a single randomly selected value is between 91.1 and 92. P(91.1 < X < 92) = Find the probability that a sample of size n=210n=210 is randomly selected with a mean between 91.1 and 92. P(91.1 < ¯xx¯ < 92) =
A population of values has a normal distribution with μ=68.6μ=68.6 and σ=66σ=66. You intend to draw...
A population of values has a normal distribution with μ=68.6μ=68.6 and σ=66σ=66. You intend to draw a random sample of size n=185n=185. Please show your answers as numbers accurate to 4 decimal places. Find the probability that a single randomly selected value is between 53.6 and 67.1. P(53.6 < X < 67.1) = Find the probability that a sample of size n=185n=185 is randomly selected with a mean between 53.6 and 67.1. P(53.6 < ¯xx¯ < 67.1) =
A population of values has a normal distribution with μ=168μ=168 and σ=47.2σ=47.2. You intend to draw...
A population of values has a normal distribution with μ=168μ=168 and σ=47.2σ=47.2. You intend to draw a random sample of size n=43n=43. Find the probability that a sample of size n=43n=43 is randomly selected with a mean less than 173. P(M < 173) = Enter your answers as numbers accurate to 4 decimal places.
A population of values has a normal distribution with μ=5.8μ=5.8 and σ=17σ=17. You intend to draw...
A population of values has a normal distribution with μ=5.8μ=5.8 and σ=17σ=17. You intend to draw a random sample of size n=225n=225. Find the probability that a single randomly selected value is less than 9. P(X < 9) = Find the probability that a sample of size n=225n=225 is randomly selected with a mean less than 9. P(M < 9) = Enter your answers as numbers accurate to 4 decimal places. Answers obtained using exact z-scores or z-scores rounded to...
A population of values has a normal distribution with μ=55.3 and σ=14.9. You intend to draw...
A population of values has a normal distribution with μ=55.3 and σ=14.9. You intend to draw a random sample of size n=97. Find the probability that a single randomly selected value is between 58.9 and 59.7. P(58.9 < X < 59.7) = Incorrect Find the probability that a sample of size n=97 is randomly selected with a mean between 58.9 and 59.7. P(58.9 < M < 59.7) = Incorrect Enter your answers as numbers accurate to 4 decimal places. Answers...
A population of values has a normal distribution with μ=113.2μ=113.2 and σ=67σ=67. You intend to draw...
A population of values has a normal distribution with μ=113.2μ=113.2 and σ=67σ=67. You intend to draw a random sample of size n=218n=218. Find the probability that a single randomly selected value is between 100 and 125. P(100 < X < 125) = Find the probability that a sample of size n=218n=218 is randomly selected with a mean between 100 and 125. P(100 < M < 125) = Enter your answers as numbers accurate to 4 decimal places. Answers obtained using...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT