An agent for a residential real estate company in a sub-urb located outside of Washington, DC, has the business objec-tive of developing more accurate estimates of the monthly rental cost for apartments. Toward that goal, the agent would like to use the size of an apartment, as defined by square footage to predict the monthly rental cost. The agent selects a sample of 48 one-bedroom apartments.
Interpret the meaning of b0 and b1 in this problem.
Size (Square feet) | Rent ($) |
524 | 1110 |
616 | 1175 |
666 | 1190 |
830 | 1410 |
450 | 1210 |
550 | 1225 |
780 | 1480 |
815 | 1490 |
1070 | 1495 |
610 | 1680 |
835 | 1810 |
660 | 1625 |
590 | 1469 |
675 | 1395 |
744 | 1150 |
820 | 1140 |
912 | 1220 |
628 | 1434 |
645 | 1519 |
840 | 1105 |
800 | 1130 |
804 | 1250 |
950 | 1449 |
800 | 1168 |
787 | 1224 |
960 | 1391 |
750 | 1145 |
690 | 1093 |
840 | 1353 |
850 | 1530 |
965 | 1650 |
1060 | 1740 |
665 | 1235 |
775 | 1550 |
960 | 1545 |
827 | 1583 |
655 | 1575 |
535 | 1310 |
625 | 1195 |
749 | 1200 |
634 | 1185 |
641 | 1444 |
860 | 1385 |
740 | 1275 |
593 | 1050 |
880 | 1650 |
895 | 1340 |
692 | 1560 |
Please use Excel. The only thing I cant figure out is b1
Please explain how to get b1
steps:-
copy the data in excel data data analysis regression ok in input Y range select the range of the rent column
in input X range select the size column ok.
the output be:-
SUMMARY OUTPUT | ||||||||
Regression Statistics | ||||||||
Multiple R | 0.354314 | |||||||
R Square | 0.125539 | |||||||
Adjusted R Square | 0.106529 | |||||||
Standard Error | 186.0407 | |||||||
Observations | 48 | |||||||
ANOVA | ||||||||
df | SS | MS | F | Significance F | ||||
Regression | 1 | 228565.2 | 228565.2 | 6.603807 | 0.013481 | |||
Residual | 46 | 1592112 | 34611.13 | |||||
Total | 47 | 1820677 | ||||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |
Intercept | 992.9927 | 147.3669 | 6.738236 | 2.25E-08 | 696.3586 | 1289.627 | 696.3586 | 1289.627 |
Size (Square feet) | 0.493167 | 0.19191 | 2.569787 | 0.013481 | 0.106873 | 0.879461 | 0.106873 | 0.879461 |
so here, our regression equation be:-
so, our = the coefficient of size.
*** If you have any doubt regarding the problem please write it in the comment section.if you are satisfied please give me a LIKE if possible...
Get Answers For Free
Most questions answered within 1 hours.