Question

The admissions officer at a small college compares the scores on the Scholastic Aptitude Test (SAT)...

The admissions officer at a small college compares the scores on the Scholastic Aptitude Test (SAT) for the school's in-state and out-of-state applicants. A random sample of 9 in-state applicants results in a SAT scoring mean of 1238 with a standard deviation of 49. A random sample of 17 out-of-state applicants results in a SAT scoring mean of 1150 with a standard deviation of 35. Using this data, find the 99% confidence interval for the true mean difference between the scoring mean for in-state applicants and out-of-state applicants. Assume that the population variances are not equal and that the two populations are normally distributed.

Step 2 of 3:

Find the margin of error to be used in constructing the confidence interval. Round your answer to six decimal places.

The admissions officer at a small college compares the scores on the Scholastic Aptitude Test (SAT) for the school's in-state and out-of-state applicants. A random sample of 9 in-state applicants results in a SAT scoring mean of 1238 with a standard deviation of 49. A random sample of 17 out-of-state applicants results in a SAT scoring mean of 1150 with a standard deviation of 35. Using this data, find the 99% confidence interval for the true mean difference between the scoring mean for in-state applicants and out-of-state applicants. Assume that the population variances are not equal and that the two populations are normally distributed.

Step 3 of 3:

Construct the 99% confidence interval. Round your answers to the nearest whole number.

Homework Answers

Answer #1

Margin of error = t*se = 2.994*18.408 = 55.113552

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The admissions officer at a small college compares the scores on the Scholastic Aptitude Test (SAT)...
The admissions officer at a small college compares the scores on the Scholastic Aptitude Test (SAT) for the school's in-state and out-of-state applicants. A random sample of 18 in-state applicants results in a SAT scoring mean of 1150 with a standard deviation of 36. A random sample of 12 out-of-state applicants results in a SAT scoring mean of 1113 with a standard deviation of 54. Using this data, find the 95% confidence interval for the true mean difference between the...
The admissions officer at a small college compares the scores on the Scholastic Aptitude Test (SAT)...
The admissions officer at a small college compares the scores on the Scholastic Aptitude Test (SAT) for the school's in-state and out-of-state applicants. A random sample of 99 in-state applicants results in a SAT scoring mean of 12311231 with a standard deviation of 3636. A random sample of 1919 out-of-state applicants results in a SAT scoring mean of 11611161 with a standard deviation of 3737. Using this data, find the 98%98% confidence interval for the true mean difference between the...
The admissions officer at a small college compares the scores on the Scholastic Aptitude Test (SAT)...
The admissions officer at a small college compares the scores on the Scholastic Aptitude Test (SAT) for the school's in-state and out-of-state applicants. A random sample of 8 in-state applicants results in a SAT scoring mean of 1138 with a standard deviation of 29. A random sample of 17 out-of-state applicants results in a SAT scoring mean of 1219 with a standard deviation of 27. Using this data, find the 98% confidence interval for the true mean difference between the...
The admissions officer at a small college compares the scores on the Scholastic Aptitude Test (SAT)...
The admissions officer at a small college compares the scores on the Scholastic Aptitude Test (SAT) for the school's in-state and out-of-state applicants. A random sample of 16 in-state applicants results in a SAT scoring mean of 1144 with a standard deviation of 55. A random sample of 10 out-of-state applicants results in a SAT scoring mean of 1185 with a standard deviation of 41. Using this data, find the 99% confidence interval for the true mean difference between the...
The admissions officer at a small college compares the scores on the Scholastic Aptitude Test (SAT)...
The admissions officer at a small college compares the scores on the Scholastic Aptitude Test (SAT) for the school's in-state and out-of-state applicants. A random sample of 8 in-state applicants results in a SAT scoring mean of 1087 with a standard deviation of 33. A random sample of 18 out-of-state applicants results in a SAT scoring mean of 1130 with a standard deviation of 51. Using this data, find the 98% confidence interval for the true mean difference between the...
The admissions officer at a small college compares the scores on the Scholastic Aptitude Test (SAT)...
The admissions officer at a small college compares the scores on the Scholastic Aptitude Test (SAT) for the school's in-state and out-of-state applicants. A random sample of 17 in-state applicants results in a SAT scoring mean of 1220 with a standard deviation of 44. A random sample of 11 out-of-state applicants results in a SAT scoring mean of 1140 with a standard deviation of 26. Using this data, find the 98% confidence interval for the true mean difference between the...
The admissions officer at a small college compares the scores on the Scholastic Aptitude Test (SAT)...
The admissions officer at a small college compares the scores on the Scholastic Aptitude Test (SAT) for the school's in-state and out-of-state applicants. A random sample of 11 in-state applicants results in a SAT scoring mean of 1170 with a standard deviation of 51. A random sample of 17 out-of-state applicants results in a SAT scoring mean of 1206 with a standard deviation of 36. Using this data, find the 90% confidence interval for the true mean difference between the...
The admissions officer at a small college compares the scores on the Scholastic Aptitude Test (SAT)...
The admissions officer at a small college compares the scores on the Scholastic Aptitude Test (SAT) for the school's in-state and out-of-state applicants. A random sample of 17 in-state applicants results in a SAT scoring mean of 1220 with a standard deviation of 44. A random sample of 11 out-of-state applicants results in a SAT scoring mean of 1140 with a standard deviation of 26. Using this data, find the 98% confidence interval for the true mean difference between the...
The admissions officer at a small college compares the scores on the Scholastic Aptitude Test (SAT)...
The admissions officer at a small college compares the scores on the Scholastic Aptitude Test (SAT) for the school's male and female applicants. A random sample of 1111 male applicants results in a SAT scoring mean of 1204with a standard deviation of 3838. A random sample of 1919 female applicants results in a SAT scoring mean of 1105with a standard deviation of 3131. Using this data, find the 98% confidence interval for the true mean difference between the scoring mean...
The admissions officer at a small college compares the scores on the Scholastic Aptitude Test (SAT)...
The admissions officer at a small college compares the scores on the Scholastic Aptitude Test (SAT) for the school's male and female applicants. A random sample of 16 male applicants results in a SAT scoring mean of 1146 with a standard deviation of 30. A random sample of 9 female applicants results in a SAT scoring mean of 1054 with a standard deviation of 33. Using this data, find the 98% confidence interval for the true mean difference between the...