Question

[10 pts.] You keep rolling a fair 6-sided die as long as no value is repeated....

[10 pts.] You keep rolling a fair 6-sided die as long as no value is repeated. When you see the first repeated value, that is your last roll. Let X be the number of rolls it took. Find P(X = k) for all k.

You must justify every single step to get to the answer, or no credit will be awarded.

Homework Answers

Answer #1

Let's say the value gets repeated after rolling twice, P(2) =

Similarly, P(3) = ( The first value has to be different from the last two , both of which are same. i.e Lets say the last two values are 1, 1st roll has to be one of the 2,3,4,5,6)

P(4) = (The 2nd roll has to be different from the last two , both of which are same. i.e Lets say the last two values are 1, 2nd roll has to be one of the 2,3,4,5,6 . Lets say it is 2.. Now, 1st roll has to be one of the 1,3,4,5,6 as 2 cant be repeated again & it can all the other values.)

So, to generalize , P(k) =   for k>0

Hope I clarified your query. Do let me know, your thoughts on this.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. Suppose you have a fair 6-sided die with the numbers 1 through 6 on the...
1. Suppose you have a fair 6-sided die with the numbers 1 through 6 on the sides and a fair 5-sided die with the numbers 1 through 5 on the sides. What is the probability that a roll of the six-sided die will produce a value larger than the roll of the five-sided die? 2. What is the expected number of rolls until a fair five-sided die rolls a 3? Justify your answer briefly.
5. Suppose the six-sided die you are using for this problem is not fair. It is...
5. Suppose the six-sided die you are using for this problem is not fair. It is biased so that rolling a 6 is three times more likely than any other roll. For this problem, the experiment is rolling a six-sided die twice. (A): What is the probability that one or both rolls are even numbers (2, 4 or 6’s)? (B): What is the probability that at least one of the rolls is an even number or that the sum of...
roll a fair die repeatedly. a) Let X denote the number of rolls until you get...
roll a fair die repeatedly. a) Let X denote the number of rolls until you get at least 3 different results. Find E(X) without calculating the distribution of X. b) Let S denote the number of rolls until you get a repeated result. Find E(S).
Suppose you pay $0.40 to roll a fair 10-sided die with the understanding that you will...
Suppose you pay $0.40 to roll a fair 10-sided die with the understanding that you will get $1.10 back for rolling a 1. Otherwise, you get no money back. What is your expected value of gain or loss? Round your answer to the nearest cent (i.e. 2 places after the decimal point), if necessary. Do NOT type a "$" in the answer box. Expected value of gain or loss: $
You have a fair five-sided die. The sides of the die are numbered from 1 to...
You have a fair five-sided die. The sides of the die are numbered from 1 to 5. Each die roll is independent of all others, and all faces are equally likely to come out on top when the die is rolled. Suppose you roll the die twice. Let event A to be “the total of two rolls is 10”, event B be “at least one roll resulted in 5”, and event C be “at least one roll resulted in 1”....
Imagine rolling a fair 6-sided die until we get a six. We know that the probability...
Imagine rolling a fair 6-sided die until we get a six. We know that the probability that this occurs on the nth roll is (5/6)n−1·(1/6). Now describe: - the infinite sample space of the experiment - the probability function for this experiment - Show that your probability function satisfies Pr(Ω) =1 Describe how you obtained your answers.
You flip a fair coin. If the coin lands heads, you roll a fair six-sided die...
You flip a fair coin. If the coin lands heads, you roll a fair six-sided die 100 times. If the coin lands tails, you roll the die 101 times. Let X be 1 if the coin lands heads and 0 if the coin lands tails. Let Y be the total number of times that you roll a 6. Find P (X=1|Y =15) /P (X=0|Y =15) .
You roll a fair 6-sided die once and observe the result which is shown by the...
You roll a fair 6-sided die once and observe the result which is shown by the random variable X. At this point, you can stop and win X dollars. Or, you can also choose to discard the X dollars you win in the first roll, and roll the die for a second time to observe the value Y. In this case, you will win Y dollars. Let W be the number of dollars that you win in this game. a)...
a fair die was rolled repeatedly. a) Let X denote the number of rolls until you...
a fair die was rolled repeatedly. a) Let X denote the number of rolls until you get at least 3 different results. Find E(X) without calculating the distribution of X. b) Let S denote the number of rolls until you get a repeated result. Find E(S).
Roll a fair four-sided die twice. Let X be the sum of the two rolls, and...
Roll a fair four-sided die twice. Let X be the sum of the two rolls, and let Y be the larger of the two rolls (or the common value if a tie). a) Find E(X|Y = 4) b) Find the distribution of the random variable E(X|Y ) c) Find E(E(X|Y )). What does this represent? d) Find E(XY |Y = 4) e) Find the distribution of the random variable E(XY |Y ) f) Explain why E(XY |Y ) = Y...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT