Question

Use the sample data to test the hypothesis. H0:p1=p2=p3. Ha:Not all population proportions are the same...

Use the sample data to test the hypothesis. H0:p1=p2=p3. Ha:Not all population proportions are the same

Population 1: yes 150 no 100. Population 2: yes 150 no 150. Population 3: yes 91 no 109.

where Pi is the population proportion of yes responses for population i. Using a .05 level of significance. Compute the sample proportion for each population. Round your answers to two decimal places. P1=? P2=?P3?

Use the multiple comparison procedure to determine which population proportions differ significantly. Use a level of significance. Round ,  and difference to two decimal places. Round critical value to four decimal places.

Comparison 1v2, 1v3, 2v3. NEED Pi. Pj. Absolute difference. ni. nj. Critical value. and Significant Diff>CV

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Use the sample data below to test the hypothese. H0: p1=p2=p3. Ha: Not all population proportions...
Use the sample data below to test the hypothese. H0: p1=p2=p3. Ha: Not all population proportions are the same. Population 1: yes 150 no 100. Population 2: yes 150 no 150. Population 3 yes 97 no 103. Where Pi is the population proportion of yes responses for population i. Using a .05 level of significance the p-value=____?
Use the sample data below to test the hypotheses H0: p1 = p2 = p3 Ha:...
Use the sample data below to test the hypotheses H0: p1 = p2 = p3 Ha: not all population proportions are equal where pi is the population proportion of Yes responses for population i. Response Populations 1 2 3 Yes 155 155 86 No 105 155 94 Find the value of the test statistic. (Round your answer to three decimal places.) Find the p-value. (Round your answer to four decimal places.) p-value = Using a 0.05 level of significance, state...
Use the sample data below to test the hypotheses H 0:  p 1 =  p 2 =  p 3...
Use the sample data below to test the hypotheses H 0:  p 1 =  p 2 =  p 3 H a: Not all population proportions are the same Populations Response 1 2 3 Yes 150 150 92 No 100 150 108 where  p i is the population proportion of yes responses for population  i. Using a .05 level of significance. Use Table 12.4. a. Compute the sample proportion for each population. Round your answers to two decimal places. p̄ 1 =   p̄ 2 =   p̄...
In a quality control test of parts manufactured at Dabco Corporation, an engineer sampled parts produced...
In a quality control test of parts manufactured at Dabco Corporation, an engineer sampled parts produced on the first, second, and third shifts. The research study was designed to determine if the population proportion of good parts was the same for all three shifts. Sample data follow. Production Shift Quality First Second Third Good 285 368 176 Defective 15 32 24 b. If the conclusion is that the population proportions are not all the same, use a multiple comparison procedure...
1. Consider this hypothesis test: H0: p1 - p2 = 0 Ha: p1 - p2 >...
1. Consider this hypothesis test: H0: p1 - p2 = 0 Ha: p1 - p2 > 0 Here p1 is the population proportion of “yes” of Population 1 and p2 is the population proportion of “yes” of Population 2. Use the statistics data from a simple random sample of each of the two populations to complete the following: (8 points) Population 1 Population 2 Sample Size (n) 400 600 Number of “yes” 300 426 Compute the test statistic z. What...
Consider the following competing hypotheses and accompanying sample data. Use Table 1. H0 : P1− P2...
Consider the following competing hypotheses and accompanying sample data. Use Table 1. H0 : P1− P2 = 0.20 HA : P1− P2 ≠ 0.20   x1 = 150 x2 = 130   n1 = 250 n2 = 400 a. Calculate the value of the test statistic. (Round intermediate calculations to at least 4 decimal places and final answer to 2 decimal places.)   Test statistic    b. Approximate the p-value. p-value < 0.01 0.01 ≤ p-value < 0.025 0.025 ≤ p-value < 0.05...
Use the sample data below to test the hypotheses : : Not all population proportions are...
Use the sample data below to test the hypotheses : : Not all population proportions are the same Populations Response 1 2 3 Yes 200 200 91 No 150 200 109 where is the population proportion of yes responses for population . Using a level of significance 0.05. The p-value is - Select your answer -less than .005between .005 and .01between .01 and .025between .025 and .05between .05 and .10greater than .10 What is your conclusion? - Select your answer...
In a quality control test of parts manufactured at Dabco Corporation, an engineer sampled parts produced...
In a quality control test of parts manufactured at Dabco Corporation, an engineer sampled parts produced on the first, second, and third shifts. The research study was designed to determine if the population proportion of good parts was the same for all three shifts. Sample data follow. Production Shifts Quality First Second Third Good 285 368 176 Defective 15 32 24 b. If the conclusion is that the population proportions are not all the same, use a multiple comparison procedure...
The null and alternative hypotheses are: H0:p1−p2=0H0:p1−p2=0 H1:p1−p2≠0H1:p1−p2≠0 A sample of 340 observations from the first...
The null and alternative hypotheses are: H0:p1−p2=0H0:p1−p2=0 H1:p1−p2≠0H1:p1−p2≠0 A sample of 340 observations from the first population indicated that X1 is 300. A sample of 320 observations from the second population revealed X2 to be 260. Use the 0.02 significance level to test the hypothesis. a. State the decision rule. (Negative answer should be indicated by a minus sign. Round the final answers to 2 decimal places.) The decision rule is to reject H0 if z   is outside  (  ,  ). b. Compute...
Consider the following competing hypotheses and accompanying sample data. Use Table 1. H0: p1 − p2...
Consider the following competing hypotheses and accompanying sample data. Use Table 1. H0: p1 − p2 ≥ 0 HA: p1 − p2 < 0   x1 = 236 x2 = 254   n1 = 387 n2 = 387 a. At the 5% significance level, find the critical value(s). (Negative values should be indicated by a minus sign. Round your answer to 2 decimal places.)   Critical value    b. Calculate the value of the test statistic. (Negative value should be indicated by a...