1) Find the sample size necessary to estimate the mean IQ score of statistics students such that it can be said with 95% confidence that the sample mean is ±7 IQ points of the true mean. Assume that the standard deviation is
19 and determine the required sample size.
2) There are many reasons adults use credit cards. A recent survey found that 47%
of adults used credit cards for convenience.
a. To conduct a follow-up study that would provide 95% confidence that the point estimate is correct to within
±0.02 of the population proportion, how many people need to be sampled?
b. To conduct a follow-up study that would provide 95% confidence that the point estimate is correct to within
±0.06 of the population proportion, how many people need to be sampled?
c. Compare the results of (a) and (b).
3)A stationery store wants to estimate the mean retail value of greeting cards that it has in its inventory. A random sample of 100 greeting cards indicates a mean value of $ 2.93 and a standard deviation of $ 0.58
a. Assuming a normal distribution, construct a 90 % confidence interval estimate of the mean value of all greeting cards in the store's inventory.
b. Suppose there were 2,000 greeting cards in the store's inventory. How are the results in part (a) useful in assisting the store owner to estimate the total value of her inventory?
If possible, please explain how to do in excel or ph stat. Thank you in advance for your help!!
1)
Solution :
Given that,
Population standard deviation = = 19
Margin of error = E = 7
At 95% confidence level the z is ,
= 1 - 95% = 1 - 0.95 = 0.05
/ 2 = 0.05 / 2 = 0.025
Z/2 = Z0.025 = 1.96
sample size = n = (Z/2* / E) 2
n = (1.96 * 19 / 7)2
n = 28.3
n = 29
Sample size = 29
Get Answers For Free
Most questions answered within 1 hours.