Question

Foot-Length (Raw Data, Software Required): It has been claimed that, on average, right-handed people have a...

Foot-Length (Raw Data, Software Required):
It has been claimed that, on average, right-handed people have a left foot that is larger than the right foot. Here we test this claim on a sample of 10 right-handed adults. The table below gives the left and right foot measurements in millimeters (mm). Test the claim at the 0.01 significance level. You may assume the sample of differences comes from a normally distributed population.

Person Left Foot (x) Right Foot (y)
1 274 274
2 271 269
3 261 263
4 257 256
5 263 260
6 275 275
7 275 272
8 260 258
9 275 274
10 257 255

You should be able copy and paste the data directly into your software program.

(a) The claim is that the mean difference (x - y) is positive (μd > 0). What type of test is this?

This is a right-tailed test.

This is a two-tailed test.    

This is a left-tailed test.


(b) What is the test statistic? Round your answer to 2 decimal places.
t

d

=

(c) What is the P-value of the test statistic? Round to 4 decimal places.
P-value =

(d) What is the conclusion regarding the null hypothesis?

reject H0

fail to reject H0    


(e) Choose the appropriate concluding statement.

The data supports the claim that, on average, right-handed people have a left foot that is larger than the right foot.

There is not enough data to support the claim that, on average, right-handed people have a left foot that is larger than the right foot.  

  We reject the claim that, on average, right-handed people have a left foot that is larger than the right foot.

We have proven that, on average, right-handed people have a left foot that is larger than the right foot.

Homework Answers

Answer #1

Solution:

(a) The claim is that the mean difference (x - y) is positive (μd > 0). What type of test is this?

Answer:

This is a right-tailed test.

(b) What is the test statistic? Round your answer to 2 decimal places.


(c) What is the P-value of the test statistic? Round to 4 decimal places.
Answer:



(d) What is the conclusion regarding the null hypothesis?

Answer:

fail to reject H0    

(e) Choose the appropriate concluding statement.

Answer:

There is not enough data to support the claim that, on average, right-handed people have a left foot that is larger than the right foot.  

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Foot-Length (Raw Data, Software Required): It has been claimed that, on average, right-handed people have a...
Foot-Length (Raw Data, Software Required): It has been claimed that, on average, right-handed people have a left foot that is larger than the right foot. Here we test this claim on a sample of 10 right-handed adults. The table below gives the left and right foot measurements in millimeters (mm). Test the claim at the 0.01 significance level. You may assume the sample of differences comes from a normally distributed population. Person Left Foot (x) Right Foot (y) 1 273...
Foot-Length: It has been claimed that, on average, right-handed people have a left foot that is...
Foot-Length: It has been claimed that, on average, right-handed people have a left foot that is larger than the right foot. Here we test this claim on a sample of 10 right-handed adults. The table below gives the left and right foot measurements in millimeters (mm). Test the claim at the 0.05 significance level. You may assume the sample of differences comes from a normally distributed population. Person Left Foot (x) Right Foot (y) difference (d = x − y)...
Foot-Length (Raw Data, Software Required): It has been claimed that, on average, right-handed people have a...
Foot-Length (Raw Data, Software Required): It has been claimed that, on average, right-handed people have a left foot that is larger than the right foot. Here we test this claim on a sample of 10 right-handed adults. The table below gives the left and right foot measurements in millimeters (mm). Test the claim at the 0.05 significance level. You may assume the sample of differences comes from a normally distributed population. Person Left Foot (x) Right Foot (y) 1 268...
Foot-Length (Raw Data, Software Required): It has been claimed that, on average, right-handed people have a...
Foot-Length (Raw Data, Software Required): It has been claimed that, on average, right-handed people have a left foot that is larger than the right foot. Here we test this claim on a sample of 10 right-handed adults. The table below gives the left and right foot measurements in millimeters (mm). Test the claim at the 0.01 significance level. You may assume the sample of differences comes from a normally distributed population. Person Left Foot (x) Right Foot (y) 1 270...
Foot-Length: It has been claimed that, on average, right-handed people have a left foot that is...
Foot-Length: It has been claimed that, on average, right-handed people have a left foot that is larger than the right foot. Here we test this claim on a sample of 10 right-handed adults. The table below gives the left and right foot measurements in millimeters (mm). Test the claim at the 0.01 significance level. You may assume the sample of differences comes from a normally distributed population. Person Left Foot (x) Right Foot (y) difference (d = x − y)...
Foot-Length: It has been claimed that, on average, right-handed people have a left foot that is...
Foot-Length: It has been claimed that, on average, right-handed people have a left foot that is larger than the right foot. Here we test this claim on a sample of 10 right-handed adults. The table below gives the left and right foot measurements in millimeters (mm). Test the claim at the 0.05 significance level. You may assume the sample of differences comes from a normally distributed population. Person Left Foot (x) Right Foot (y) difference (d = x − y)...
Foot-Length: It has been claimed that, on average, right-handed people have a left foot that is...
Foot-Length: It has been claimed that, on average, right-handed people have a left foot that is larger than the right foot. Here we test this claim on a sample of 10 right-handed adults. The table below gives the left and right foot measurements in millimeters (mm). Test the claim at the 0.05 significance level. You may assume the sample of differences comes from a normally distributed population. Person Left Foot (x) Right Foot (y) difference (d = x − y)...
Foot-Length: It has been claimed that, on average, right-handed people have a left foot that is...
Foot-Length: It has been claimed that, on average, right-handed people have a left foot that is larger than the right foot. Here we test this claim on a sample of 10 right-handed adults. The table below gives the left and right foot measurements in millimeters (mm). Test the claim at the 0.01 significance level. You may assume the sample of differences comes from a normally distributed population. Person Left Foot (x) Right Foot (y) difference (d = x − y)...
Sibling IQ Scores (Raw Data, Software Required): There have been numerous studies involving the correlation and...
Sibling IQ Scores (Raw Data, Software Required): There have been numerous studies involving the correlation and differences in IQ's among siblings. Here we consider a small example of such a study. We will test the claim that, on average, older siblings have a higher IQ than their younger sibling. The results are depicted for a sample of 10 siblings in the table below. Test the claim at the 0.05 significance level. You may assume the sample of differences comes from...
Sibling IQ Scores (Raw Data, Software Required): There have been numerous studies involving the correlation and...
Sibling IQ Scores (Raw Data, Software Required): There have been numerous studies involving the correlation and differences in IQ's among siblings. Here we consider a small example of such a study. We will test the claim that, on average, older siblings have a higher IQ than their younger sibling. The results are depicted for a sample of 10 siblings in the table below. Test the claim at the 0.05 significance level. You may assume the sample of differences comes from...